1、28 2 2 Bc1 SJO u rBla lo fSo u thwe st U n ive rsity fo r Na tio na Iitie scNa tura lsc ie n e e E d itio n May 2002cI|: 1003B284 3(20 022c0 13 9c05MAT LA B sn,l2 , oIn(1. 2 B9$ S/ ,61 0 41 : 2 . +v ,61 0 64 )K1: qMT LA BI ZLa aD EA, z % D EA9 v5.y D EA L=4 ZLar9 E.1oM: s(D EA) ;L?; MTLA Bms |: 0 22
2、1 , 02 45DS M : A1 D E A e s,eD EA (D at a En ve loP m en t A nsi ), Mr q Q$, Sg ( )S( ), ( %(D MuvMrrm NBZEn,z .D EA c hanl es 1978 M43.ZEK1Btd ( a 3a)r N; , D EA$ o ).5/ B :D MU :no-BD MU ,lD MUnxlnZ 1 2l=n l-2 1 .m. 2 -.-,m.yb 12y 11=ny lbyZImpyZn|D MU :_ T:B(x, , x2 , ,l, xmT , ytBb, ,l, ys i) T
3、5 Ve:_ _ _ _ _ _ ._ _ pY_ _ _ ,:n_ pMU -B,:n_ . _ E_ _ :X =wx , x2lxn , Y = ty , lilS , S .!v = (v l, v Z ,l, y)Tu=(b, , u Z,l, u , )Tl : 20 02B03b04Te: (1 94 6B) . 3, 2 B9 S/ q.140 2 Bc1 S28 sY _ ,5D MU ,9 9 OmsY:= v lx lm+m+l+, : = x vO ,=ba1, + u 2 , +l+ uAm=uA ,9 Fl,9 g,v,5D MU ,r q.N, D EA9 9 1
4、vl D MU ;r. 7bo , y:mY, , =i=B -I,v,D MU ,r q N . T, _ uv , Bs d(:Tub vb0) . BD Mu , , p PmrKv _ .yN,D EACZR ( C): BD Mu , ,/v5:aa P a0.mB:o5 . t,a, (1 . , .b),b.b, v .b Bs T?5. 7lt=B CB= tV=tuT _ , .BmF , .BmoFv5( C) VNL?5;m ax yb=,st . V=xx. (l . J . n) , xBl,=0 , .L?(P)b, *b, *D MU ,KD _ ,(P) PD
5、MU ,r q,rKv _ .i:TL?,b: *b, * B.lIzl (l ) L?(P )bm* ,c, , :,= Vb: *B1 ,5D MUm D EAr(CZR); (2) L?(P)ib, * 0 , L_D EAr,c, * oi O, = y0bm*Bl,5DMU ,D EAr(C ZR).B I n(P ) T T( M O d kle) :m in( gB: (e FsB+ e=s + )scmco, x , +aBe x , ,o, , ,Bsn= , : (Dm)J= I Jo1B0 , sB0 , s + . 0,aB(,l,I) m M ; : + = (, H
6、,l,) s M ;bB(. 1,b: ,l,cb) nD MuF“ ;b= (l, l,l, l)ax , ,b=B(l, l,l, l)1 , : ; : Bl (B |:B10B6). I2 !L?(D e)Kb s*B, s* + ,cn,50 ) . * = l ,5o Mu , o EAr(eZR ):(2) Bn=l Os *Bb,a* EBb,5n MumD EAr(e, R).2 MAT LAB B,19 BD M U *Mr qi) ( )r,BL?; 19 D MU ,2 : MAT LA B s14 1(lbi. n)Mr q,5nL?, 9 1 v,B 9 9 . q
7、MT LA BI (P )(D .),1 ZL % D E A9 v9 5.MT LAB Math w o rk s CI q. 11984 Mw_ g , E+ M?Z,C-S= VK S/ q. “ -, MTLABX W S/ 5 q.S =an S, MATLABX Es #. NJ LA BXn = 3# S / ?14 .MATLA B Mat Lab I.: bv, 20 0 .MAI , LA B Pro g ra m s fo r D E APEN e vucw eB1, x U x sao- z h2 , w u sho u- x la n(1. Co lle ge o f
8、C o m Put e r Se ien ee a nd Te ehn o lo gy, So ut hw e st U n iversity fo r N at io n alitie s , Che n gd u , Siehu a n 6 100 4 1;2.C o llo ge o fMathem at ie s, Sic hu an U n iv ersity, Cheng du , Sio hua n 6 10( F4)A bstra et: D E A m o dels ar e p rog m ed w ith MAT LAB : Th e se pro gram s o fe r e o n v e n ient an defi e ient to o ls fo r D EA th e o ri e s an d aP Plieati o n s.Key w o r d s: dat en velo Pm eni an al ysis (D EA); line ar Pro g rm ing ; N gRI A B