收藏 分享(赏)

IGBT选型.pdf

上传人:精品资料 文档编号:9062086 上传时间:2019-07-22 格式:PDF 页数:13 大小:188.90KB
下载 相关 举报
IGBT选型.pdf_第1页
第1页 / 共13页
IGBT选型.pdf_第2页
第2页 / 共13页
IGBT选型.pdf_第3页
第3页 / 共13页
IGBT选型.pdf_第4页
第4页 / 共13页
IGBT选型.pdf_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、 IGBT 基础教程基础教程基础教程基础教程 : :第一部分 第一部分第一部分第一部分 -选型选型选型选型 (中中中 中) ) 作者 : Jonathan Dodge P.E., Senior Applications Engineer John Hess Vice President, Marketing Microsemis Advanced Power Technology 传导传导传导传导 损耗损耗损耗损耗 对于给定的开关速度 ,NPT 技术通常 比 PT 技术 具有较高的 VCE(on)。这种差异 被进一步放大 ,因为 NPT 的 VCE(on)随着温度的 升高而升高 (正温度系

2、数 ), 而 PT 的 VCE(on)随温度的 升高而降低 (负温度系数 )。 然而 ,对于任何的 IGBT,无论是 PT 或 NPT,开关损耗都是以 VCE(on)作为代价的 。更高速度的 IGBT 具有较高的 VCE(on);较低速度的 IGBT具有较低的 VCE(on)。事实上 ,它可能是一个非常快 的 PT 装置 拥有 较高的 VCE(on),相反,NPT 装置的开关速度 则较慢 。 开关损耗开关损耗开关损耗开关损耗 对于给定的 VCE(on),PT IGBTs 具有较高的高速开关功能与更低的总开关能量 。 这是由于较高的增益和少子寿命减少 ,少子寿命减少 结束了长尾电流 。 坚固耐用

3、坚固耐用坚固耐用坚固耐用 NPT IGBTs 通常是额定短路 (short circuit rated)而 PT 器件 往往不 是,NPT IGBTs比 PT IGBTs 可以吸收更多的雪崩能量 。NPT 技术 更坚固 耐用 ,原因是更 宽广 的基 极和PNP 双极型晶体管的 低增益 。这是 NPT 技术的主 要优势 ,通过权衡 开关速度 而获得 。要使 PT IGBT 的 VCES 大于 600 伏是很 困难的 ,而利用 NPT 的技术 就很容易做 到。先进的电力技术也提供了一系列非常快 的 1200 伏 PT IGBTs,如功率 MOS 7IGBT 系列 。 温度的影响温度的影响温度的影响

4、温度的影响 对于 所有 PT 和 NPT IGBTs,开启 时的开关速度和 损耗 几乎不受温度 的影响 。但二极管的反向恢复电流随温度的增加 而增加 。因此 在电源电路 中,温度影响了 表面 二极管 从而 影响 IGBT 的开启 损耗 。对于 NPT IGBTs,在工作温度范围 内,关断速度和开关损耗保持相对恒定 。 对于 PT IGBTs,关断 速度 随温度的上升而减慢 ,开关损耗 则随温度的上升 而 增加 。 然而 ,开关损耗低 的首要因素是 尾电流 的消失 。 如前所述 ,NPT IGBTs 通常具有正温度系数 ,这使得它们非常适合用于并 联。对于并联器件 正温度系数是可取的 ,因为热

5、 器件比冷器件传导的电流少 ,因此所有的并 联器件往往自然共享电流 。而 PT IGBTs 因为它们 的负温度系数 不能并 联是一种误解 。PT IGBTs可并联,因为以下 因素 : 其温度系数往往是几乎为零 ,在高电流 情况下 有时 甚至 是正的 。 通过散热器 的热分散 往往迫使 器件 共享 电流 ,因为一个热点 将会加热他的相邻部分,从而降低了它们的电压 。 影响温度系数 的参数 往往 能在 设备之间 很好的 匹配 。 可能的可能的可能的可能的 IGBTs Microsemi 的先进电力技术提供了三个系列的 IGBT 涵盖了广泛的应用 : “功率 MOS 7 系列 ” 600V 和 12

6、00V PT 技术的 IGBTs 由GP部分 的号码 指定 ,市场上 最快的 一种 IGBT,专为运行在高频率和 /或尾电流敏感应用 而设计 ,如软开关。 “迅雷系列 ”以GT标志的 唯一的 600V NPT 技术 的 IGBTs,这种 快速的 IGBTs能够 应用 在 150KHz 的硬开关 中,坚固的 短路额定设备适合于开关式电源供应器 ,以及马达驱动 。 “快速系列 ”以GF标志的 600V 和 1200V 的 NPT 技术 的 IGBTs,额定短路坚固的设备 ,低电压适用于硬开关低于 100kHz 的操作 ,如电机驱动器 。 APT 功率 MOS 7 IGBTs 是独特的 ,因为 他们

7、 的转换速度极快 ,而且他们 结合了 专有金属栅极和开放的 单元 结构 。其结果是非常低的内部 等效 栅电阻 (EGR), 通常 是一欧姆 的非常小的一部分 ;比多晶硅栅极 器件 低一到两个数量级 。低 EGR 使开关速度更快 ,因而降低开关损耗 。金属 栅和开放的 单元 结构 也会 导致性能的 极其 统一 ,使栅更易激发 ,在开关的瞬态 减少热点 和提高了 产品的可靠性 。开放的 单元 结构也 更加增强了对于 在制造过程中 引起的 缺陷 的容错 能力 。 数据数据数据数据 表表表 表 APT 数据 提供的是 方便电源电路设计 者的相 关资料 ,包括如何 选择适当的 型号 ,以及 预测其在 应

8、用中的性能 。图表使设计师能够从一 种工作状态 推断 另一种工作状态 。应该指出虽然测试结果 对电路 的依赖非常强烈 ,尤其是对发射 极杂散 电感 ,以及集电极 杂散电 感和栅极驱动电路的设计和布局 。不同的测试电路产生不同的结果 。 下面 是 APT 产品说明书 的术语定义以及 IGBT 特征的更深入的 细节 。 标题标题标题标题 图 4 IGBTs 的 APT 部分 编号 评级评级评级评级 最高评级最高评级最高评级最高评级 VCES 集集集 集电极 电极电极电极 -发射发射发射发射 极极极 极电压 电压电压电压 当栅极和发射极短路 ,集电极和发射极之间的最大电压 就是 VCES。确定最大

9、电压 ,要根据温度 ,集电极和发射极之间 允许 的最大 电压实际上 小于 VCES。 BVCES 的静态电气特性说明 了这点 。 VGE 栅极栅极栅极栅极 -发射极发射极发射极发射极 电压电压电压电压 VGE 是指 栅极和发射极之间的 最大连续电压 。定义 VGE 是为了 防止栅氧化层 击穿 ,并限制短路电流 。实际的栅氧化层击穿电压明显高于 VGE,但一直处于 VGE 的范围内就 可以 确保应用的可靠性 。 VGEM 栅极栅极栅极栅极 发射极发射极发射极发射极 瞬瞬瞬 瞬态 态态 态电压 电压电压电压 VGEM 是栅极和发射极之间 最大的脉冲电压 。这样 定义 的目的是 防止栅氧化层 击穿

10、 。栅极瞬态电压 不仅 能够被 栅极驱动信号 引发 ,而且 往往更 易被 栅极驱动电路 的杂散电感和 栅极集电极 反馈电容 引发 。如果 栅上的振铃 比 VGEM 大,就可能需要减少 电路 的寄生 电感 ,和/或增加 栅电阻 以减缓开关速度 。除了电源 电路布局 ,栅极驱动电路 的布局 对于减小栅极驱动器环路面积造成的杂散电感 效应 是至关重要的 。 如果 使用 齐纳 二极管 钳位 ,建议将它连接 在栅极驱动器和栅极电阻 之间 ,而不是直接 与栅极相连 。反向 栅极驱动没有必要 这样做 ,但可以用来实现最大的开 关速度 ,同时避免被 dv/dt 激发 开启 。APT9302 的应用 笔记有 更

11、多 的关于 栅极驱动器设计 的内容 。 IC1, IC2 连续集电极电流连续集电极电流连续集电极电流连续集电极电流 IC1和IC2表示 在其最高额定结温 下的集电极 最大连续直流电流 。他们 由热敏电阻率 R JC和温度的 关系式确定 ,如下式 : (1) 这个方程简单说 ,就是 热量 可以被损耗 , , 通过 传导损耗 ,等于 所产生 的最大允许热量 ,既 VCE(on) * IC。 IC1 和 IC2 与开关损耗无关 。求解 IC: (2) 当然 ,VCE(on)取决于 IC(以及结温 )。 除了在相对较低的 电流下 ,IC 和 VCE(on)基本成线性 关系 ,如图 5。因此 ,这种 近

12、似 线性可用于 计算 IC 和 VCE(on) 。 图 5 线性近似的 IC 和 VCE(on) 这里的曲线是高温下芯片的 VCE(on)曲线 。(为了计算数据表的 准确值 , Microsemi 采用 VCE(on)的最大值 ,考虑到 与普通情况下的 差异 ,这里的 VCE(on)高于典型的VCE(on)。) VCE(on)与 IC 的方程 为: (3) 将方程 (3)代入 方程 (2)就可以解得 IC: (4) 这是 我们 熟悉 的二次方程 的形式 , 得到如下方程 : (5) 方程 (5)确定的 集电极直流电流 IC(完全 依据器件参数 ),是将芯片 加热至其最高额定结温 得到的

13、 。IC1 为 TC 等于 25 时由方程 (5)计算 。IC2 表示 TC 等于 较高温 时由方程(5)计算 。这是一个更有 用的规范 ,传统的 以 IC1 来作为衡量标准并不科 学,因为器件 只工作在 25 的情形非常少有 ,但是 IC2 仍然没有 将开关损耗考虑进去 。 下页为英文原文以供参考 : Possible IGBTs By Jonathan Dodge, P.E., Senior Applications Engineer John Hess, Vice President, Marketing Microsemis Advanced Power Technology Pu

14、nch through vs NPT PT versus NPT technology Conduction loss For a given switching speed, NPT technology generally has a higher VCE(on) than PT technology. This difference is magnified further by fact that VCE(on) increases with temperature for NPT (positive temperature coefficient), whereas VCE(on)

15、decreases with temperature for PT (negative temperature coefficient). However, for any IGBT, whether PT or NPT, switching loss is traded off against VCE(on). Higher speed IGBTs have a higher VCE(on); lower speed IGBTs have a lower VCE(on). In fact, it is possible that a very fast PT device can have

16、a higher VCE(on) than a NPT device of slower switching speed. Switching loss For a given VCE(on), PT IGBTs have a higher speed switching capability with lower total switching energy. This is due to higher gain and minority carrier lifetime reduction, which quenches the tail current. Ruggedness NPT I

17、GBTs are typically short circuit rated while PT devices often are not, and NPT IGBTs can absorb more avalanche energy than PT IGBTs. NPT technology is more rugged due to the wider base and lower gain of the PNP bipolar transistor. This is the main advantage gained by trading off switching speed with

18、 NPT technology. It is difficult to make a PT IGBT with greater than 600 Volt VCES whereas it is easily done with NPT technology. Advanced Power Technology does offer a series of very fast 1200 Volt PT IGBTs, the Power MOS 7IGBT series. Temperature effects For both PT and NPT IGBTs, turn-on switch

19、ing speed and loss are practically unaffected by temperature. Reverse recovery current in a diode however increases with temperature, so temperature effects of an external diode in the power circuit affect IGBT turn-on loss. For NPT IGBTs, turn-off speed and switching loss remain relatively constant

20、 over the operating temperature range. For PT IGBTs, turn-off speed degrades and switching loss consequently increases with temperature. However, switching loss is low to begin with due to tail current quenching. As mentioned previously, NPT IGBTs typically have a positive temperature coefficient, w

21、hich makes them well suited for paralleling. A positive temperature coefficient is desirable for paralleling devices because a hot device will conduct less current than a cooler device, so all the parallel devices tend to naturally share current. It is a misconception however that PT IGBTs cannot be

22、 paralleled because of their negative temperature coefficient. PT IGBTs can be paralleled because of the following: Their temperature coefficients tend to be almost zero and are sometimes positive at higher current. Heat sharing through the heat sink tends to force devices to share current because a

23、 hot device will heat its neighbors, thus lowering their on voltage. Parameters that affect the temperature coefficient tend to be well matched between devices. Possible IGBTs Microsemis Advanced Power Technology offers three series of IGBTs to cover a broad range of applications: Power MOS 7 Series

24、 “ 600V and 1200V PT technology IGBTs designated by GP in the part number, one of the fastest IGBTs on the market, designed for operation at high frequencies and/or for tail current sensitive applications such as soft switching. Thunderbolt Series “ 600V only NPT technology IGBTs designated by GT in

25、 the part number, fast IGBTs capable of 150kHz in hard switching applications, short circuit rated rugged devices suitable for switch-mode power supplies as well as motor drives. Fast Series “ 600V and 1200V NPT technology IGBTs designated by GF in the part number, short circuit rated rugged devices

26、 with low on voltage suitable for hard switching operation below 100kHz such as in motor drives. Power MOS 7 IGBTs from APT are unique in that they are designed to switch extremely fast, and they incorporate a proprietary metal gate and open cell structure. The result is extremely low internal equ

27、ivalent gate resistance (EGR), typically a fraction of an Ohm; one to two orders of magnitude lower than for poly-silicon gate devices. Low EGR enables faster switching and consequently lower switching loss. The metal gate and open cell structure also result in extremely uniform and fast excitation

28、of the gate, minimizing hot spots during switching transients and improving reliability. An open cell structure is also more tolerant of defects induced during the manufacturing process. Datasheet walkthrough The intent of datasheets provided by APT is to include relevant information that is useful

29、and convenient for the power circuit designer, both for selection of the appropriate device as well as predicting its performance in an application. Graphs are provided to enable the designer to extrapolate from one set of operating conditions to another. It should be noted though that test results

30、are very strongly circuit dependent, especially on stray emitter inductance but also on stray collector inductance and gate drive circuit design and layout. Different test circuits yield different results. The following walkthrough provides definition of terms in APT datasheets as well as further de

31、tails on IGBT characteristics. Figure 4 APT Part Numbering for IGBTs Heading Ratings Maximum ratings VCES collector-emitter voltage This is a rating of the maximum voltage between the collector and emitter terminals with the gate shorted to the emitter. This is a maximum rating, and depending on t

32、emperature, the maximum permissible collector emitter voltage could actually be less than the VCES rating. See the description of BVCES in Static Electrical Characteristics. VGE gate-emitter voltage VGE is a rating of the maximum continuous voltage between the gate and emitter terminals. The purpo

33、ses of this rating are to prevent breakdown of the gate oxide and to limit short circuit current. The actual gate oxide breakdown voltage is significantly higher than this, but staying within this rating at all times ensures application reliability. VGEM gate emitter voltage transient VGEM is the ma

34、ximum pulsed voltage between the gate and emitter terminals. The purpose of this rating is to prevent breakdown of the gate oxide. Transients on the gate can be induced not only by the applied gate drive signal but often more significantly by stray inductance in the gate drive circuit as well as fee

35、dback through the gate-collector capacitance. If there is more ringing on the gate than VGEM, stray circuit inductances probably need to be reduced, and/or the gate resistance should be increased to slow down the switching speed. In addition to the power circuit layout, gate drive circuit layout is

36、critical in minimizing the effective gate drive loop area and resulting stray inductances. If a clamping zener is used, it is recommended to connect it between the gate driver and the gate resistor rather than directly to the gate terminal. Negative gate drive is not necessary but may be used to ach

37、ieve the utmost in switching speed while avoiding dv/dt induced turn-on. See application note APT9302 for more information on gate drive design. IC1, IC2 continuous collector current IC1 and IC2 are ratings of the maximum continuous DC current with the die at its maximum rated junction temperature.

38、They are based on the junction to case thermal resistance rating RJC and the case temperature as follows: (1) This equation simply says that the maximum heat that can be dissipated, equals the maximum allowable heat generated by conduction loss, VCE(on) X IC . There are no switching losses involved

39、in IC1 and IC2. Solving for IC: (2) Of course VCE(on) depends upon IC (as well as junction temperature). Except at relatively low current, the relationship between IC and VCE(on) is fairly linear, as shown in Figure 5. Thus a linear approximation can be used to relate IC to VCE(on). Figure 5 Linea

40、r Approximation of IC versus VCE(on) The curve of VCE(on) is with the die at elevated temperature. (To calculate datasheet values, Microsemi uses the maximum VCE(on), which is higher than the typical VCE(on) to account for normal variations between parts.) The equation relating VCE(on) to IC is: (3)

41、 This equation is substituted into (2) for VCE(on) to solve for IC: (4) This is in the form of the familiar quadratic equation The solution is: (5) IC in (5) represents the continuous DC current (with the device fully on) that causes the die to heat up to its maximum rated junction temperature. IC

42、1 is the solution to (5) with TC equal to 25C. IC2 is the solution to (5) with TC at an elevated temperature. This is a more useful rating than the traditional IC1 rating since operating at a case temperature of only 25C is seldom feasible, however IC2 still does not take switching losses into account.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报