收藏 分享(赏)

耐药机制1.doc

上传人:11xg27ws 文档编号:9043627 上传时间:2019-07-21 格式:DOC 页数:5 大小:31.50KB
下载 相关 举报
耐药机制1.doc_第1页
第1页 / 共5页
耐药机制1.doc_第2页
第2页 / 共5页
耐药机制1.doc_第3页
第3页 / 共5页
耐药机制1.doc_第4页
第4页 / 共5页
耐药机制1.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1.产生灭活抗生素的各种酶1.1 内酰胺酶 (-lactamase) 内酰胺类抗生素都共同具有一个核心 内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生 内酰胺酶是细菌对 -内酰胺类抗菌药物产生耐药的主要原因。细菌产生的 -内酰胺酶,可借助其分子中的丝氨酸活性位点,与 内酰胺环结合并打开 内酰胺环,导致药物失活。迄今为止报道的 内酰胺酶已超过 300 种,1995 年 Bush 等将其分为四型:第 1 型为不被克拉维酸抑制的头孢菌素酶;第 2 型为能被克拉维酸抑制的 -内酰胺酶;第 3 型为不被所有 内酰胺酶抑制剂抑制的金属 -内酰胺酶 (需 Zn2+活化)

2、。可被乙二胺四乙酸和 P-chloromercuribenzate 所抑制;第 4 型为不被克拉维酸抑制的青霉素酶。临床常见的 内酰胺酶有超广谱 内酰胺酶、头孢菌素酶(AmpC 酶)和金属酶。1.1.1 超广谱 -内酰胺酶(Extended-Spectrum-lactamases,ESBLs)ESBLs 是一类能够水解青霉素类、头孢菌素类及单环类抗生素的 内酰胺酶,属Bush 分型中的 2 型 内酰胺酶,其活性能被某些 内酰胺酶抑制剂(棒酸、舒巴坦、他唑巴坦)所抑制。ESBLs 主要由普通 -内酰胺酶基因(TEM1,TEM2 和 SHV1 等)突变而来,其耐药性多由质粒介导。自 1983 年在

3、德国首次发现 ESBLs 以来,目前已报道的TEM 类 ESBIs 已有 90 多种,SHV 类 ESBLs 多于 25 种。TEM 型和 SHV 型 ESBLs 主要发现于肺炎克雷伯菌和大肠埃希菌,亦发现于变形杆菌属、普罗威登斯菌属和其他肠杆菌科细菌。国内近年来随着三代头孢菌素的广泛使用,产 ESBLs 菌的检出率逐年增加。NCCLs规定,凡临床分离的大肠埃希氏菌和克雷伯氏菌均应监测是否为产 ESBLs 菌株;若产生,无论体外对第三代头抱菌素、氨曲南的药敏结果如何,均应报告对三代头孢菌素及氨曲南耐药。另外,ESBLs 菌株不仅对 -内酰胺类抗生素有很高的耐药率,而且对氨基糖苷类、喹喏酮类耐药

4、率也在 60左右,因此,临床遇到由 ESBLs 引起的感染时,建议首选含 内酰胺酶抑制剂的复方抗生素制剂或亚胺培南;对于头孢吡肟等四代头孢,尚有争议,根据抗菌药的 PKPD 理论,适当改变给药剂量和给药间隔。以使血药浓度超过细菌 MIC 的时间达 40给药间隔以上,或许是有效的。1.1.2 头孢菌素酶(AmpC 酶)届 Bush 分类中的 1 型(型) 内酰胺酶。通常将其分为由染色体介导产生的 AmpC 内酰胺酶和由质粒介导产生的 AmpC 内酰胺酶,前者的产生菌有阴沟肠杆菌、铜绿假单胞菌等,后者主要由肺炎克雷伯氏菌和大肠埃希氏菌产生。AmpC 酶可作用于大多数青霉素,第一、二、三代头孢菌素和

5、单环类抗生素。而第四代头孢菌素、碳青霉烯类不受该酶作用。该酶不能被 内酰胺酶抑制剂所抑制。AmpC内酰胺酶的产生有 2 种可能:在诱导剂存在时暂时高水平产生,当诱导剂不存在时,酶产量随之下降,三代头孢菌素、棒酸和碳青霉烯类抗生素是诱导型AmpC 酶的强诱导剂;染色体上控制酶表达的基因发生突变,导致 AmpC 酶持续稳定高水平表达。由高产 AmpC 酶耐药菌引起的感染死亡率很高。实际上,所有的革兰氏阴性菌都能产生染色体介导的 AmpC 头孢菌素酶,在多数情况下为低水平表达;在肠杆菌、柠檬酸杆菌、沙雷氏菌、铜绿假单胞菌中可高频诱导产生,且常为高产突变株。当临床出现上述细菌感染,开始几天三代头孢菌素

6、治疗敏感,而随后发生耐药时,我们可怀疑为高产 AmpC 酶的细菌感染,四代头孢菌素和碳青霉烯类抗生素不受具影响,可供临床选用。含酶抑制剂的复方制剂不能用于治疗产 AmpC 酶菌株的感染。1.1.3 金属酶(metallo-1actamase)大部分 -内酰胺酶的活性位点是丝氨酸残基,但也有一小部分活性位点为金属离子的酶类。第一个发现的以金属离子为活性中心的酶是由蜡样芽抱杆菌产生的头孢菌素酶,能被 EDTA 所抑制,之后世界各地均发现了能产生这类酶的各种细菌。1988 年 Bush 首次将该酶定名为金属 -内酰胺酶(metallo-1actamase),简称金属酶。金属 -内酰胺酶耐受 内酰胺酶

7、抑制剂且可水解几乎所有 内酰胺类抗生素( 包括亚胺培南)。该酶已在气单胞菌、嗜麦芽窄食单胞菌、洋葱伯克霍尔德氏菌中发现,其中嗜麦芽窄食单胞菌的亚胺培南耐药性由染色体介导,而脆弱拟杆菌、肺炎克雷伯氏菌、铜绿假单胞菌中质粒介导的突变株在日本已有报道。由粘质沙雷氏菌产生的金属 内酰胺酶 IMP-1 型可在类似接合子的 intl3上移动,已经传播到铜绿假单胞菌、肺炎克雷伯氏菌和产碱杆菌。金属酶可以水解碳青霉烯类和最近开发的第四代头孢菌素。金属 -内酰胺酶有广泛传播的潜力,对几乎所有的 内酰胺类抗生素均具有水解活性,是目前所知的最强的 -内酰胺酶-。1.2.氨基糖甙修饰酶(或钝化酶灭活酶 )在细菌对氨基

8、糖甙类抗生素产生耐药的机制中,修饰酶介导的耐药最为流行,酶促修饰的氨基糖甙类抗生素不能与核糖体靶位作用,因此失去抗菌活性。修饰酶主要包括乙酰转移酶、磷酸转移酶和核苷转移酶。三类氨基糖苷修饰酶的作用机制各不相同:乙酰转移酶(AAC) 修饰依赖于乙酰辅酶 A 的 N-乙酰化:磷酸转移酶(APH)修饰依赖于 ATP 的 O-磷酸化;核苷酸转移酶(ANT)修饰依赖于 ATP 的腺苷化。在革兰氏阴性病原菌中,最常见的氨基糖苷修饰酶是 AAC(6),使氨基糖苷类抗生素 1、3、2或 6位乙酰化,如今已发现 16 种编码 AAC(6)的基因。铜绿假单胞菌和肠杆菌科细菌趋向于产生 AAC(3)、AAC(6)、

9、ANT(2) 以及 APH(3);葡萄球菌和粪肠球菌经常产生 ANT(4)(4)或双功能的AAC(6)APH(2”)。葡萄球菌对庆大霉素、卡那霉素和妥布霉素的耐药性和肠球菌的高度庆大霉素耐药性通常由双功能酶介导,这些酶通常(但非总是) 由位于多重耐药质粒上的转座子(Tn924)编码,如葡萄球菌具有的转座子 Tn5405 编码的 APH(3)(提供卡那霉素、新霉素和阿米卡星耐药性),而其他的定位于染色体。越来越多的菌株可产生 2 种或更多种酶,对抗氨基糖苷类抗生素。在过去几年里常见的组合是庆大霉素修饰酶 ANT(2)和 AAC(3)与 AAC(6)结合,导致对庆大霉素、妥布霉素、耐替米星、卡那霉

10、素和阿米卡星的广谱耐药性。氨基糖苷类抗生素对非发酵菌、肠杆菌科及一些革兰氏阳性球菌均有很好的抗菌活性,与 内酰胺类抗生素联用有协同抗菌作用,在感染治疗中占有重要地位。但由于以上耐药机制的存在,细菌耐药问题也日趋严重,应该引起重视,可喜的是阿米卡星等对 MRSA和产 ESBLs 菌株仍保持 17-40的敏感率。2 改变药物作用靶位2.1 青霉素结合蛋白(PBP)的改变导致的 内酰胺类抗生素耐药 青霉素结合蛋白(PBP)参与了肽聚糖合成的最后阶段。高分子量 PBP 常常为多模块,具有 N 末端糖基转移酶区和 C 末端转肽酶区。转肽酶区的活性位点丝氨酸与酶的天然结构相仿,可与与 内酰胺类抗生素发生不

11、可逆酰化。青霉素结合蛋白(PBP)的改变常导致如下两种临床重要的耐药表型。2.1.1 耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus arueus,MRSA) MRSA 是 20 世纪 60 年代英国首先报道的一种严重的临床耐药致病菌,20 世纪 80 年代以来,世界各地都相继发生 MRSA 医院感染的暴发流行,并逐年增多。MRSA 耐药分为固有耐药和获得性耐药,固有耐药是由染色体介导的,其耐药性的产生是因为细菌产生一种特殊的青霉素结合蛋白 PBP2a(或 PBP2),分子量为 78000 的蛋白质,与 内酰胺类抗生素的亲和力减低,从而导致细

12、菌对 -内酰胺类抗生素耐药。PBP2a 由 mecA 基因编码,95以上的 MRSA 菌株能检测到 mecA 基因,而敏感株则无。获得性耐药是由质粒介导的,细菌获得耐药基因后,产生大量 -内酰胺酶(而不是 PBPs),使耐酶青霉素缓慢失活,表现出耐药性,多为临界耐药。在 MRSA 检测过程中,凡属 MRSA,不管其对其他 -内酰胺类抗生素 MIC 值或抑菌圈的大小,实验室均应向临床报告为对所有青霉素类、头孢菌素类、碳青霉烯类、碳头孢烯类和 内酰胺类 酶抑制剂复合制剂耐药,以免误导临床用药。MRSA 感染的治疗是临床十分棘手的难题之一,关键是其对许多抗生素具有多重耐药性,万古霉素是目前临床上治疗

13、 MRSA 疗效肯定的抗生素,应用 30 多年来未发现耐药菌株。新药替考拉宁亦具有与万古霉素相似的抗 MRSA 的活性。2.1.2 耐青霉素肺炎链球菌 (Penicillin resistant Streptococcus pneumoniae,PRSP)长期以来肺炎链球菌对青霉素高度敏感。MIC 在 0.005-0.01mgL 之间。1967 年澳大利亚首次报道耐青霉素肺炎链球菌,MIC 为 0.5mgL,此后世界许多国家和地区均有报道,且耐药率迅速上升。PRSP 的耐药机制肺炎链球菌的青霉素结合蛋白(PBP)发生改变,使其与青霉素的亲和力减低。肺炎链球菌有 6 种 PBP:1a、1b 、2

14、x、2a、2b 和 3,其中 PBP2b最为重要,如果青霉素结合到 PBP2b 上并使之抑制即导致细菌溶解和死亡;反之, PBP2b发生突变,青霉素不能产生作用,则导致 PRSP。在 PRSP 高耐菌株中(MIC2gm1)可有多达 4 种 PBP(主要是 1a、1b 、2x、2b)同时发生改变7。肺炎链球菌是引起社区获得性肺炎的重要致病菌。目前,国内 PRSP 的发生率在 4左右,明显低于欧洲国家,在亚洲也属于中等水平,且 MIC 多小于 1mgL,因此,在社区获得性肺部感染病原菌中,PRSP 尚不构成严重威胁,青霉素仍可作为首选治疗药物。但是耐药没有国界,中国日前 PRSP 发生率尚低但决不

15、意味着不要重视,而是应该进一步加强 PRSP 的耐药监测。对于 PRSP 感染临床治疗推荐使用头孢噻肟头孢曲松、新喹诺酮类(如司帕沙星)。若属 PRSP 严重感染则需应用万古霉素或加用利福平。2.2 DNA 拓扑异构酶的改变引起喹诺酮类抗生素耐药喹诺酮类药物的作用机制主要是通过抑制 DNA 拓扑异构酶而抑制 DNA 的合成,从而发挥抑菌和杀菌作用。细菌 DNA 拓扑异构酶有 I、,喹诺酮类药物的主要作用靶位是拓扑异构酶和拓扑异构酶。拓扑异构酶又称 DNA 促旋酶,参与 DNA 超螺旋的形成,拓扑异构酶则参与细菌子代染色质分配到子代细菌中。革兰氏阴性菌中 DNA促旋酶是喹诺酮类的第一靶位,而革兰

16、氏阳性菌中拓扑异构酶是第一靶位。当编码组成 DNA 促旋酶的 A 亚单位和 B 亚单位及组成拓扑异构酶 的 parC 和 parE亚单位中任一亚基的基因发生突变均可引起喹诺酮类的耐药性。在所有的突变型中,以gyrA 的突变为主,占 80左右,其次是 gyrB、parC 和 parE 突变。在所有这些突变类型中,若型拓扑异构酶上存在 2 个突变点(如 gyrA 和 parC 上),它们引起对氟喹诺酮类的耐药远远大于只有一个突变点(如 gyrA 或 gyrB 上),前者是后者的 3-4 倍。同时没有发现突变仅出现在 parC 基因这一现象。这可能是因为 DNA 促旋酶是氟喹诺酮类的重要靶位 ,gy

17、rA亚单位的改变可引起酶结构发生变化致空间位障,阻止喹诺酮类进入喹诺酮类作用区,或引起物理化学变化,干扰喹诺酮与酶的相互作用。这些结果显示 gyrA 上突变的出现是引起细菌对喹诺酮类发生耐药的主要机制,而 parC 突变只是进一步引起铜绿假单胞菌对喹诺酮的高度耐药。DNA 拓扑异构酶的改变是细菌耐喹诺酮类抗菌药的主要机制,其他耐喹诺酮类的机制还包括后面将要谈到的细菌膜通透性改变和主动外排机制。3 细胞膜透性屏障和抗生素主动外排泵 细菌可以通过细胞壁的障碍或细胞膜通透性的改变,形成一道有效屏障,使得抗生素无法进入细胞内并达到作用靶位而发挥抗菌效能,这也是细菌在进化与繁殖过程中形成的一种防卫机制。

18、这类耐药机制是非特异性的,主要见于革兰氏阴性菌。因为革兰氏阴性菌细胞壁粘肽层外面存在着类脂双层组成的外膜,外层为脂多糖,由紧密排列的碳氮分子组成,阻碍了疏水性抗菌药进入菌体内。另外细菌外膜上还存在着多种孔蛋白,分子较大者为 OmpF,分子较小者为 OmpC,它们可形成特异性通道 (OprD)和非特异性的通道(OprF) ,作为营养物质和亲水性抗菌药物的通道。抗菌药物分子越大,所带负电荷越多,疏水性越强,则不易通过细菌外膜。细菌发生突变失去某种特异孔蛋白后即可导致细菌耐药性,另外由于外膜蛋白 OprF 的缺失,使药物不易通过而产生耐药性。如铜绿假单胞菌特异性孔蛋白 OprD2 缺失即导致碳青霉烯

19、类抗生素耐药。另外一种导致细菌非特异性耐药的机制是细菌主动外排泵的存在,可以将进入细菌体内的药物泵出膜外,从而逃避抗生素的作用。主动外排系统由于能特异地将进入细胞内的多种抗菌药物主动泵出细胞外,导致细胞获得耐药性。如大肠埃希氏菌中的多药外排泵AcorAB-TolC 系统可以导致细菌对包括四环素、氯霉素、红霉素、 内酰胺类、利福平、氟喹诺酮类、氧化剂、有机溶剂、碱性染料等多种结构不相关的药物耐药。铜绿假单胞菌的 MexAB-OprM 系统的主动外排作用也是导致铜绿假单胞菌固有的多重耐药性的重要因素之一8。细菌的膜耐药机制主要表现在铜绿假单胞菌的多药耐药性。铜绿假单胞菌几乎囊括了包括膜耐药在内的所有细菌耐药机制,其耐药已成为当前感染治疗中较为棘手的问题之一,尤其值得重视和研究。以上只是一些常见病原菌的耐药问题,这些耐药现象并非孤立存在的,临床上可能会遇到多种耐药菌或多种耐药机制并存的复杂感染问题。另外在临床实践中,随着感染病原菌的变化和变迁,新的细菌耐药问题也会不断涌现,如社区获得性感染中耐氨苄西林的流感嗜血杆菌的上升,院内感染中逐年增多的真菌耐药问题都有待进一步探讨。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报