1、精选高中模拟试卷第 1 页,共 16 页郫都区高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 设 a0,b0,若 是 5a与 5b的等比中项,则 + 的最小值为( )A8 B4 C1 D2 在“唱响内江” 选拔赛中,甲、乙两位歌手的 5 次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、 ,则下列判断正确的是( )A ,乙比甲成绩稳定 B ,甲比乙成绩稳定C ,甲比乙成绩稳定 D ,乙比甲成绩稳定3 过抛物线 C:x 2=2y 的焦点 F 的直线 l 交抛物线 C 于 A、B 两点,若抛物线 C 在点 B 处的切线斜率为1,则线段|AF|= (
2、)A1 B2 C3 D44 已知 ,其中 i 为虚数单位,则 a+b=( )A1 B1 C2 D35 已知向量 =(1,2), =(x,4),若 ,则 x=( )A 4 B 4 C 2 D 26 设全集 U=1,3,5,7,9,集合 A=1,|a5| ,9 , UA=5,7,则实数 a 的值是( )A2 B8 C 2 或 8 D2 或 87 已知函数 ,其中 , 为自然对数的底数当 时,函数()esinxfxRe2.718 0,2x的图象不在直线 的下方,则实数 的取值范围( )()yfxykkA B C D,1(,12(,)2(,e【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性
3、、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用精选高中模拟试卷第 2 页,共 16 页8 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在 内的人数分别为( )90,1A20,2 B24,4 C25,2 D25,49 在 中,角 , , 的对边分别是, 为 边上的高, ,若CACBHA5BH,则 到 边的距离为( )01520aBbcHAA2 B3 C.1 D410设 、 是两个不同的平面,l、m 为两条不同的直线,命题 p:若平面 ,l,m,则 lm;命题q:l, ml,m
4、 ,则 ,则下列命题为真命题的是( )Ap 或 q Bp 且 q Cp 或 q Dp 且q11如图 ,三行三列的方阵中有 9 个数 aij(i=1,2,3;j=1 ,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A B C D12已知双曲线 : ( , ),以双曲线 的一个顶点为圆心,为半径的圆C21xyab0ab被双曲线 截得劣弧长为 ,则双曲线 的离心率为( )3A B C D6525425435二、填空题13【盐城中学 2018 届高三上第一次阶段性考试】函数 f(x)=xlnx 的单调减区间为 14已知(ax+1) 5的展开式中 x2的系数与 的展开式中 x3的系
5、数相等,则 a= 15已知数列 中, ,函数 在 处取得极值,则na1321() 4nnaf _.na精选高中模拟试卷第 3 页,共 16 页16已知线性回归方程 =9,则 b= 17已知数列 1,a 1,a 2,9 是等差数列,数列 1,b 1,b 2,b 3,9 是等比数列,则 的值为 18定义在1,+)上的函数 f(x)满足:(1)f(2x)=2f(x);(2)当 2x4 时,f(x)=1|x 3|,则集合 S=x|f(x)=f(34)中的最小元素是 三、解答题19某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房第一年建新住房 am2,第二年到第四年,每年建设的新住房比前一年
6、增长 100%,从第五年起,每年建设的新住房都比前一年减少 am2;已知旧住房总面积为 32am2,每年拆除的数量相同()若 10 年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(),求前 n(1 n10 且 nN)年新建住房总面积 Sn20已知命题 p:方程 表示焦点在 x 轴上的双曲线命题 q:曲线 y=x2+(2m 3)x+1 与 x 轴交于不同的两点,若 pq 为假命题,p q 为真命题,求实数 m 的取值范围精选高中模拟试卷第 4 页,共 16 页21(本小题满分 12 分)已知向量 , ,(cosin,s)mxxw=-a(cosin,2cos
7、)xxw=-b设函数 的图象关于点 对称,且 ()()2nfxxR=+ab,1)2p(1,2(I)若 ,求函数 的最小值;1mf(II)若 对一切实数恒成立,求 的单调递增区间()4fp)(xfy【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力22已知二次函数 f(x)=x 2+2bx+c(b,c R)(1)若函数 y=f(x)的零点为1 和 1,求实数 b,c 的值;精选高中模拟试卷第 5 页,共 16 页(2)若 f(x)满足 f(1)=0,且关于 x 的方程 f(x)+x+b=0 的两个实数根分别在区间(3,2),(0,1)内,求实数
8、 b 的取值范围23在平面直角坐标系 XOY 中,圆 C:(x a) 2+y2=a2,圆心为 C,圆 C 与直线 l1:y=x 的一个交点的横坐标为 2(1)求圆 C 的标准方程;(2)直线 l2与 l1垂直,且与圆 C 交于不同两点 A、B,若 SABC=2,求直线 l2的方程24(本小题满分 12 分)已知 1()2ln()fxaxR()当 时,求 的单调区间;3af()设 ,且 有两个极值点,其中 ,求 的最小值()lngxa()g10,x12()gx【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力精选高中模拟试卷第 6 页,共 16 页精选
9、高中模拟试卷第 7 页,共 16 页郫都区高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解: 是 5a与 5b的等比中项,5a5b=( ) 2=5,即 5a+b=5,则 a+b=1,则 + =( + )(a+b) =1+1+ + 2+2 =2+2=4,当且仅当 = ,即 a=b= 时,取等号,即 + 的最小值为 4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意 1 的代换2 【答案】A【解析】解:由茎叶图可知 = (77+76+88+90+94)= ,= (75+86+88+88+93 ) = =86
10、,则 ,乙的成绩主要集中在 88 附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键3 【答案】A【解析】解:x 2=2y,y=x,抛物线 C 在点 B 处的切线斜率为 1,B(1, ),x 2=2y 的焦点 F(0, ),准线方程为 y= ,直线 l 的方程为 y= ,|AF|=1故选:A精选高中模拟试卷第 8 页,共 16 页【点评】本题考查抛物线的简单性质,考查导数知识,正确运用抛物线的定义是关键4 【答案】B【解析】解:由 得 a+2i=bi1,所以由复数相等的意义知 a=1,b=2,所以 a+b=1另解:由 得 ai+2=b+i(
11、a,bR ),则a=1,b=2 ,a+b=1 故选 B【点评】本题考查复数相等的意义、复数的基本运算,是基础题5 【答案】D【解析】: 解: ,42x=0,解得 x=2故选:D6 【答案】D【解析】解:由题意可得 3A ,|a 5|=3,a=2,或 a=8,故选 D7 【答案】B【解析】由题意设 ,且 在 时恒成立,而()esinxgxfkk()0gx,2令 ,则 ,所以 在 上()esincoxg()coshecos0xh()hx0,2递增,所以 当 时, , 在 上递增, ,符合题意;21()he1k0gx(),2()g当 时, , 在 上递减, ,与题意不合;当 时, 为2ek0gx()
12、,20g21ek()gx一个递增函数,而 , ,由零点存在性定理,必存在一个零点 ,使得1k2()egk0,当 时, ,从而 在 上单调递减,从而 ,与题0()gx0,)x0x(x0,)()gx意不合,综上所述: 的取值范围为 ,故选 B,18 【答案】C【解析】精选高中模拟试卷第 9 页,共 16 页考点:茎叶图,频率分布直方图9 【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两
13、个向量的差,这是一个易错点,两个向量的和 ( 点是 的中点),另外,要选好基OAB 2OABDAB底向量,如本题就要灵活使用向量 ,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、,ABC几何意义等.10【答案】 C【解析】解:在长方体 ABCDA1B1C1D1中命题 p:平面 AC 为平面 ,平面 A1C1为平面 ,直线 A1D1,和直线 AB 分别是直线 m,l,显然满足 ,l ,m,而 m 与 l 异面,故命题 p 不正确; p 正确;命题 q:平面 AC 为平面 ,平面 A1C1为平面 ,直线 A1D1,和直线 AB 分别是直线 m,l ,显然满足 l,ml,m,而 ,故命题
14、q 不正确; q 正确;故选 C精选高中模拟试卷第 10 页,共 16 页【点评】此题是个基础题考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力11【答案】 D【解析】古典概型及其概率计算公式【专题】计算题;概率与统计【分析】利用间接法,先求从 9 个数中任取 3 个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论【解答】解:从 9 个数中任取 3 个数共有 C93=84 种取法,三个数分别位于三行或三列的情况有 6 种;所求的概率为 =故选 D【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,
15、直接解法较复杂,采用间接解法比较简单12【答案】B考点:双曲线的性质精选高中模拟试卷第 11 页,共 16 页二、填空题13【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系14【答案】 【解析】解:(ax+1) 5的展开式中 x2的项为 =10a2x2,x 2的系数为 10a2,与 的展开式中 x3的项为 =5x3,x 3的系数为 5,10a 2=5,即 a2= ,解得 a= 故答案为: 【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键15【答案】 123nA【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴
16、】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如 的递推数列求通项往往用1(0,1)naqpq构造法,利用待定系数法构造成 的形式,再根据等比数例求出 的通项,进而1()nnamqnam得出 的通项公式.na16【答案】 4 精选高中模拟试卷第 12 页,共 16 页【解析】解:将 代入线性回归方程可得 9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题17【答案】 【解析】解:已知数列 1,a 1,a 2,9 是等差数列, a1+a2 =1+9=10数列 1,b 1,b
17、2,b 3,9 是等比数列, =19,再由题意可得 b2=1q20 (q 为等比数列的公比),b2=3,则 = ,故答案为 【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题18【答案】 6 【解析】解:根据题意,得;f(2x)=2f(x),f(34)=2f(17)=4f( )=8f( )=16f( );又当 2x4 时,f(x)=1|x3|,f( )=1 | 3|= ,f(2x)=16 =2;当 2x4 时,f(x)=1|x 3|1,不存在;当 4x8 时,f(x)=2f( )=21| 3|=2,解得 x=6;故答案为:6精选高中模拟试卷第 13 页,共 16 页【点评】本题
18、考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目三、解答题19【答案】 【解析】解:(I)10 年后新建住房总面积为 a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a设每年拆除的旧住房为 xm2,则 42a+(32a10x)=232a,解得 x=a,即每年拆除的旧住房面积是 am2()设第 n 年新建住房面积为 a,则 an=所以当 1n4 时,S n=(2 n1) a;当 5n10 时,S n=a+2a+4a+8a+7a+6a+(12 n)a=故【点评】本小题主要考查函数模型的选择与应用,属于基础题解决实际问题通常有四个步骤:(1)阅读理
19、解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型20【答案】 【解析】解:方程 表示焦点在 x 轴上的双曲线, m2若 p 为真时:m2,曲线 y=x2+(2m3)x+1 与 x 轴交于不同的两点,则=(2m3) 240 m 或 m ,若 q 真得: 或 ,由复合命题真值表得:若 pq 为假命题,pq 为真命题,p,q 命题一真一假 若 p 真 q 假: ; 精选高中模拟试卷第 14 页,共 16 页若 p 假 q 真:实数 m 的取值范围为: 或 【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准
20、方程,关键是求得命题为真时的等价条件21【答案】22【答案】 【解析】解:(1)1,1 是函数 y=f(x)的零点, ,解得 b=0,c=1(2)f(1)=1+2b+c=0,所以 c=12b令 g(x)=f(x)+x+b=x 2+( 2b+1)x+b+c=x 2+(2b+1 ) xb1,关于 x 的方程 f(x)+x+b=0 的两个实数根分别在区间( 3,2),(0,1)内, ,即 解得 b ,即实数 b 的取值范围为( , )【点评】本题考查了二次函数根与系数得关系,零点的存在性定理,属于中档题23【答案】 【解析】解:(1)由圆 C 与直线 l1:y=x 的一个交点的横坐标为 2,可知交点
21、坐标为(2,2),(2a) 2+( 2) 2=a2,解得:a=2,所以圆的标准方程为:(x2 ) 2+y2=4,(2)由(1)可知圆 C 的圆心 C 的坐标为(2,0)由直线 l2与直线 l1垂直,直线 l1:y= x 可设直线 l2:y=x+m,则圆心 C 到 AB 的距离 d= ,|AB|=2 =2精选高中模拟试卷第 15 页,共 16 页所以 SABC = |AB|d= 2 =2令 t=(m+2) 2,化简可得2t 2+16t32=2(t 4) 2=0,解得 t=(m+2) 2=4,所以 m=0,或 m=4直线 l2的方程为 y=x 或 y=x424【答案】【解析】() )(xf的定义域 ),0(,当 时, ,3a123lnx2 2131xf 令 得, 或 ;令 得, ,()0fx()0故 的递增区间是 和 ;(,)21,的递减区间是 ()fx()由已知得 ,定义域为 ,xaxgln)(),0(,令 得 ,其两根为 ,2211)(axg )(g12ax21,x且 ,1240x精选高中模拟试卷第 16 页,共 16 页