收藏 分享(赏)

托克逊县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:8968731 上传时间:2019-07-18 格式:DOC 页数:15 大小:656.50KB
下载 相关 举报
托克逊县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共15页
托克逊县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共15页
托克逊县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共15页
托克逊县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共15页
托克逊县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 15 页托克逊县高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知数列 为等差数列, 为前项和,公差为 ,若 ,则 的值为( )nanSd2017SdA B C D2010 202 已知 0 ,0 ,直线 x= 和 x= 是函数 f(x)=sin(x+)图象的两条相邻的对称轴,则=( )A B C D3 为了解决低收入家庭的住房问题,某城市修建了首批 108 套住房,已知 三个社区分别有低收入CBA,家庭 360 户,270 户,180 户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从 社C区

2、抽取低收入家庭的户数为( )A48 B36 C24 D18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题4 已知双曲线和离心率为 的椭圆有相同的焦点 , 是两曲线的一个公共点,若4sin21F、 P,则双曲线的离心率等于( )21cosPFA B C D2526275 某班有 50 名学生,一次数学考试的成绩 服从正态分布 N(105,10 2),已知 P(95105)=0.32,估计该班学生数学成绩在 115 分以上的人数为( )A10 B9 C8 D76 已知角 的终边经过点 ,则 的值为( )(sin15,cos)2csA B C. D013243

3、24347 函数 f(x)=cos 2xcos4x 的最大值和最小正周期分别为( )A , B , C , D ,精选高中模拟试卷第 2 页,共 15 页8 设集合 S=|x|x 1 或 x5,T=x|axa+8 ,且 ST=R,则实数 a 的取值范围是( )A3 a 1 B 3a1 Ca 3 或 a1 Da3 或 a 19 若集合 A=x|2x1,B=x|0x2 ,则集合 AB=( )Ax|1x 1 Bx| 2 x1 Cx| 2x2 Dx|0x110已知圆 C:x 2+y2=4,若点 P(x 0,y 0)在圆 C 外,则直线 l:x 0x+y0y=4 与圆 C 的位置关系为( )A相离 B相

4、切 C相交 D不能确定11若, ,则不等式 成立的概率为( )0,1b21abA B C D68412设 ,acR,且 ,则( )A b B 1ab C 2ab D 3ab二、填空题13如果定义在 R 上的函数 f(x),对任意 x1x2都有 x1f(x 1)+x 2f(x 2)x 1f(x 2)+x 2(fx 1),则称函数为“H 函数 ”,给出下列函数f(x)=3x+1 f( x)=( ) x+1f(x)=x 2+1 f(x)=其中是“H 函数 ”的有 (填序号)14若数列a n满足:存在正整数 T,对于任意的正整数 n,都有 an+T=an成立,则称数列a n为周期为 T 的周期数列已知

5、数列a n满足: a1=m (ma ),a n+1= ,现给出以下三个命题:若 m= ,则 a5=2;若 a3=3,则 m 可以取 3 个不同的值;若 m= ,则数列a n是周期为 5 的周期数列其中正确命题的序号是 精选高中模拟试卷第 3 页,共 15 页15定义在 R 上的偶函数 f(x)在0,+ )上是增函数,且 f(2)=0 ,则不等式 f(log 8x)0 的解集是 16等比数列a n的前 n 项和为 Sn,已知 S3=a1+3a2,则公比 q= 17已知正四棱锥 的体积为 ,底面边长为 ,OABCD3则该正四棱锥的外接球的半径为_18在(2x+ ) 6的二项式中,常数项等于 (结果

6、用数值表示)三、解答题19已知数列a n是等比数列, Sn为数列a n的前 n 项和,且 a3=3,S 3=9()求数列a n的通项公式;()设 bn=log2 ,且b n为递增数列,若 cn= ,求证:c 1+c2+c3+cn120(本小题满分 10 分)选修 4-1:几何证明选讲 1111如图,点 为圆 上一点, 为圆的切线, 为圆的直径, .COCPE3CP(1)若 交圆 于点 , ,求 的长;PEF165E(2)若连接 并延长交圆 于 两点, 于 ,求 的长.,ABDOD精选高中模拟试卷第 4 页,共 15 页21已知等差数列a n,等比数列 bn满足:a 1=b1=1,a 2=b2,

7、2a 3b3=1()求数列a n,b n的通项公式;()记 cn=anbn,求数列c n的前 n 项和 Sn22(本题满分 12 分)在 中,已知角 所对的边分别是 ,边 ,且ABC,ABC,abc72,又 的面积为 ,求 的值tant3tan3AB32ABCS精选高中模拟试卷第 5 页,共 15 页23为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有 800 名学生参加了这次竞赛为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为 100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中、的值;(2)为鼓励更多

8、的学生了解“安全自救”知识,成绩不低于 85 分的学生能获奖,请估计在参加的 800 名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 的值 序号(i)分组(分数)组中值(Gi)频数(人数)频率(Fi)1 60,70) 65 0.102 70,80) 75 20 3 80,90) 85 0.204 90,100) 95 合计 50 1精选高中模拟试卷第 6 页,共 15 页24已知 a,b,c 分别为ABC 三个内角 A,B ,C 的对边,且满足 2bcosC=2ac()求 B; ()若ABC 的面积为 ,b=2 求

9、 a,c 的值精选高中模拟试卷第 7 页,共 15 页托克逊县高级中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】试题分析:若 为等差数列, ,则 为等差数列公差为 , na1122naSdannS2d,故选 B. 2017,20,0Sd考点:1、等差数列的通项公式;2、等差数列的前项和公式.2 【答案】A【解析】解:因为直线 x= 和 x= 是函数 f(x)=sin(x+ )图象的两条相邻的对称轴,所以 T= =2所以 =1,并且 sin( +)与 sin( +)分别是最大值与最小值,0,所以 = 故选 A【点评】本题考查三角函数的解析式

10、的求法,注意函数的最值的应用,考查计算能力3 【答案】 C【解析】根据分层抽样的要求可知在 社区抽取户数为 C24910827360814 【答案】C【解析】试题分析:设椭圆的长半轴长为 ,双曲线的实半轴长为 ,焦距为 , , ,且不妨设1a2acmPF1n2,由 , 得 , ,又 , 由余弦定理可知:nm122nm11nos2, , ,设双曲线的离心率为,则 ,解c24134c432c 432e)(得 .故答案选 C26e考点:椭圆的简单性质精选高中模拟试卷第 8 页,共 15 页【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由 为公共点,可把焦半径P、 的长度用椭

11、圆的半长轴以及双曲线的半实轴 来表示,接着用余弦定理表示1PF2 21,a,成为一个关于 以及的齐次式,等式两边同时除以 ,即可求得离心率.圆锥曲线问cos21,a2c题在选择填空中以考查定义和几何性质为主.5 【答案】B【解析】解:考试的成绩 服从正态分布 N(105,10 2)考试的成绩 关于 =105 对称,P(95105)=0.32 ,P(115)= (10.64)=0.18,该班数学成绩在 115 分以上的人数为 0.1850=9故选:B【点评】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩 关于=105 对称,利用对称写出要用的一段分数的频数,题目得

12、解6 【答案】B 【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.7 【答案】B【解析】解:y=cos 2xcos4x=cos2x(1cos 2x)=cos 2xsin2x= sin22x= ,故它的周期为 = ,最大值为 = 故选:B8 【答案】A【解析】解:S=|x|x 1 或 x5,T=x|axa+8 ,且 ST=R ,精选高中模拟试卷第 9 页,共 15 页 ,解得: 3a 1故选:A【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题9 【答案】D【解析】解:AB=x| 2x1x|0x2=x|0x1故选 D10【答案】

13、C【解析】解:由点 P(x 0,y 0)在圆 C:x 2+y2=4 外,可得 x02+y02 4,求得圆心 C(0,0)到直线 l:x 0x+y0y=4 的距离 d= =2,故直线和圆 C 相交,故选:C【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题11【答案】D【解析】考点:几何概型12【答案】D【解析】精选高中模拟试卷第 10 页,共 15 页考点:不等式的恒等变换.二、填空题13【答案】 【解析】解:对于任意给定的不等实数 x1,x 2,不等式 x1f(x 1)+x 2f(x 2)x 1f(x 2)+x 2f(x 1)恒成立,不等式等价为(

14、x 1x2)f(x 1)f(x 2) 0 恒成立,即函数 f(x)是定义在 R 上的不减函数(即无递减区间);f(x)在 R 递增,符合题意;f(x)在 R 递减,不合题意;f(x)在(,0)递减,在(0,+)递增,不合题意;f(x)在 R 递增,符合题意;故答案为:14【答案】 【解析】解:对于由 an+1= ,且 a1=m= 1,所以, 1, , ,a 5=2 故正确;对于由 a3=3,若 a3=a21=3,则 a2=4,若 a11=4,则 a1=5=m若 ,则 若 a11a 1= ,若 0a 11 则 a1=3,不合题意所以,a 3=2 时,m 即 a1的不同取值由 3 个故正确;若 a

15、1=m= 1,则 a2= ,所 a3= 1,a4=精选高中模拟试卷第 11 页,共 15 页故在 a1= 时,数列a n是周期为 3 的周期数列,错;故答案为:【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目15【答案】 (0, ) (64,+) 【解析】解:f(x)是定义在 R 上的偶函数,f(log 8x)0,等价为:f(|log 8x|)f (2),又 f(x)在0 ,+)上为增函数,|log 8x|2,log 8x2 或 log8x2,x64 或 0x 即不等式的解集为x|x64 或 0x 故答案为:(0, )(64,+)【点评】本题

16、考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键16【答案】 2 【解析】解:设等比数列的公比为 q,由 S3=a1+3a2,当 q=1 时,上式显然不成立;当 q1 时,得 ,即 q23q+2=0,解得:q=2 故答案为:2【点评】本题考查了等比数列的前 n 项和,考查了等比数列的通项公式,是基础的计算题17【答案】 18精选高中模拟试卷第 12 页,共 15 页【解析】因为正四棱锥 的体积为 ,底面边长为 ,所以锥高为 2,设外接球的半径为 ,依OABCD23R轴截面的图形可知:2261()

17、(8RR18【答案】 240 【解析】解:由(2x+ ) 6,得= 由 63r=0,得 r=2常数项等于 故答案为:240三、解答题19【答案】已知数列a n是等比数列, Sn为数列a n的前 n 项和,且 a3=3,S 3=9()求数列a n的通项公式;()设 bn=log2 ,且b n为递增数列,若 cn= ,求证:c 1+c2+c3+cn1【考点】数列的求和;等比数列的通项公式【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列【分析】()设数列a n的公比为 q,从而可得 3(1+ + )=9,从而解得;()讨论可知 a2n+3=3( ) 2n=3( ) 2n,从而可得 bn=

18、log2 =2n,利用裂项求和法求和【解析】解:()设数列a n的公比为 q,则 3(1+ + )=9,解得,q=1 或 q= ;故 an=3,或 an=3( ) n3;()证明:若 an=3,则 bn=0,与题意不符;故 a2n+3=3( ) 2n=3( ) 2n,精选高中模拟试卷第 13 页,共 15 页故 bn=log2 =2n,故 cn= = ,故 c1+c2+c3+cn=1 + + =1 1【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用20【答案】(1) ;(2) .4CE613D【解析】试题分析:(1)由切线的性质可知 ,由相似三角形性质知 ,

19、可得 ;CPEF:EFCP4CE(2)由切割线定理可得 ,求出 ,再由 ,求出 的值. 12()BBODPOD试题解析:(1)因为 是圆 的切线, 是圆 的直径,所以 , ,所以 ,CPO09F设 , ,又因为 ,所以 ,Ex29:所以 ,解得 .2654x考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.21【答案】 【解析】解:(I)设等差数列 an的公差为 d,等比数列b n的公比为 q: a1=b1=1,a 2=b2,2a 3b3=11+d=q,2(1+2d)q 2=1,解得 或 an=1,b n=1;或 an=1+2(n1 )=2n 1,b n=3n1精选高中模拟试卷第

20、14 页,共 15 页(II)当 时,c n=anbn=1,S n=n当 时,c n=anbn=(2n 1)3 n1,Sn=1+33+532+(2n1)3 n1,3Sn=3+332+(2n3)3 n1+(2n 1)3 n,2Sn=1+2(3+3 2+3n1) (2n1)3 n= 1(2n 1)3 n=(22n)3 n2,Sn=( n1)3 n+1【点评】本题考查了等差数列与等比数列的通项公式及其前 n 项和公式、“错位相减法” ,考查了推理能力与计算能力,属于中档题22【答案】 12【解析】试题解析:由 tant3tan3ABAB可得 ,即 .1() , , .t()CtCta , .0,3又

21、 的面积为 , ,即 , .AB2ABCS13sin2b132ab6ab又由余弦定理可得 , ,2coca7()cos , , , .12 27()()3ab24a012考点:解三角形问题【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解精选高中模拟试卷第 15 页,共 15 页答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,属于中档试题23【答案】 【解析】解:(1)由分布表可得频数为 50,故的数值为 500.1=5

22、,中的值为 =0.40,中的值为 500.2=10,中的值为 50(5+20+10)=15,中的值为 =0.30;(2)不低于 85 的概率 P= 0.20+0.30=0.40,获奖的人数大约为 8000.40=320;(3)该程序的功能是求平均数,S=650.10+750.40+850.20+950.30=82,800 名学生的平均分为 82 分24【答案】 【解析】解:()已知等式 2bcosC=2ac,利用正弦定理化简得:2sinBcosC=2sinAsinC=2sin( B+C) sinC=2sinBcosC+2cosBsinCsinC,整理得:2cosBsinCsinC=0,sinC0,cosB= ,则 B=60;()ABC 的面积为 = acsinB= ac,解得: ac=4,又 b=2,由余弦定理可得:2 2=a2+c2ac=(a+c) 23ac=(a+c) 212,解得:a+c=4,联立 解得:a=c=2

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报