收藏 分享(赏)

乳源瑶族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:8968550 上传时间:2019-07-18 格式:DOC 页数:17 大小:757.50KB
下载 相关 举报
乳源瑶族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共17页
乳源瑶族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共17页
乳源瑶族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共17页
乳源瑶族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共17页
乳源瑶族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 17 页乳源瑶族自治县高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )A B C D2 已知等差数列a n中,a 6+a8=16,a 4=1,则 a10 的值是( )A15 B30 C31 D643 在ABC 中,a=1,b=4 , C=60,则边长 c=( )A13 B C D214 圆心为(1,1)且过原点的圆的方程是( )A 2=1 B 2=1 C 2=2 D 2=25 设 =(1,2), =(1,1), = +

2、k ,若 ,则实数 k 的值等于( )A B C D6 底面为矩形的四棱锥 PABCD 的顶点都在球 O 的表面上,且 O 在底面 ABCD 内,PO平面 ABCD,当四棱锥 PABCD 的体积的最大值为 18 时,球 O 的表面积为( )A36 B48C60 D727 双曲线 的渐近线方程是( )A B C D8 以 的焦点为顶点,顶点为焦点的椭圆方程为( )A BC D9 设 a 是函数 x 的零点,若 x0a,则 f(x 0)的值满足( )精选高中模拟试卷第 2 页,共 17 页Af(x 0)=0 Bf(x 0)0Cf(x 0)0 Df(x 0)的符号不确定10已知曲线 C1:y=e x

3、 上一点 A(x 1,y 1),曲线 C2:y=1+ln(xm )(m0)上一点 B(x 2,y 2),当y1=y2 时,对于任意 x1,x 2,都有|AB|e 恒成立,则 m 的最小值为( )A1 B Ce 1 De+111某班有 50 名学生,一次数学考试的成绩 服从正态分布 N(105,10 2),已知 P(95105)=0.32,估计该班学生数学成绩在 115 分以上的人数为( )A10 B9 C8 D712若直线 与曲线 : 没有公共点,则实数 的最大值为( ):1lykx1()exfxkA1 B C1 D23【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能

4、力、等价转化能力、运算求解能力二、填空题13抛物线 y= x2 的焦点坐标为( )A(0, ) B( , 0) C(0,4) D(0,2)14已知函数 f(x)是定义在 R 上的单调函数,且满足对任意的实数 x 都有 ff(x) 2x=6,则 f(x)+f( x)的最小值等于 15下列说法中,正确的是 (填序号)若集合 A=x|kx2+4x+4=0中只有一个元素,则 k=1;在同一平面直角坐标系中,y=2 x 与 y=2x 的图象关于 y 轴对称;y=( ) x 是增函数;定义在 R 上的奇函数 f(x)有 f(x)f(x)016定义 为 与 中值的较小者,则函数 的取值范围是 )(,ming

5、f )(g ,2min)(xxf17在极坐标系中,O 是极点,设点 A,B 的极坐标分别是(2 , ),(3, ),则 O 点到直线 AB的距离是 精选高中模拟试卷第 3 页,共 17 页18已知 i 是虚数单位,且满足 i2=1,aR,复数 z=(a 2i)(1+i)在复平面内对应的点为 M,则“a=1” 是“点 M 在第四象限 ”的 条件(选填“ 充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)三、解答题19椭圆 C: =1,(ab0)的离心率 ,点(2, )在 C 上(1)求椭圆 C 的方程;(2)直线 l 不过原点 O 且不平行于坐标轴,l 与 C 有两个交点 A,B ,线

6、段 AB 的中点为 M证明:直线OM 的斜率与 l 的斜率的乘积为定值20【泰州中学 2018 届高三 10 月月考】已知函数 .,xfegmR(1)若曲线 与直线 相切,求实数 的值;yfxygx(2)记 ,求 在 上的最大值;hh0,1(3)当 时,试比较 与 的大小.0m2fxe21已知函数 f(x)的定义域为 x|xk,k Z,且对定义域内的任意 x,y 都有 f(xy)=成立,且 f(1)=1 ,当 0x2 时,f (x)0(1)证明:函数 f(x)是奇函数;(2)试求 f(2),f(3)的值,并求出函数 f(x)在2 ,3 上的最值精选高中模拟试卷第 4 页,共 17 页22(本题

7、 12 分)如图, D是 RtBAC斜边 上一点, 3ACD.(1)若 2BC,求 ;(2)若 A,求角 .23已知定义域为 R 的函数 是奇函数(1)求 f(x);(2)判断函数 f(x)的单调性(不必证明);(3)解不等式 f(|x|+1)+f(x)0精选高中模拟试卷第 5 页,共 17 页24圆锥底面半径为 ,高为 ,其中有一个内接正方体,求这个内接正方体的棱长1cm2c精选高中模拟试卷第 6 页,共 17 页乳源瑶族自治县高级中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:如图所示,BCD 是圆内接等边三角形,过直径 BE 上任

8、一点作垂直于直径的弦,设大圆的半径为 2,则等边三角形 BCD 的内切圆的半径为 1,显然当弦为 CD 时就是BCD 的边长,要使弦长大于 CD 的长,就必须使圆心 O 到弦的距离小于|OF|,记事件 A=弦长超过圆内接等边三角形的边长= 弦中点在内切圆内 ,由几何概型概率公式得 P(A)= ,即弦长超过圆内接等边三角形边长的概率是 故选 C【点评】本题考查了几何概型的运用;关键是找到事件 A 对应的集合,利用几何概型公式解答2 【答案】A【解析】解:等差数列a n,a6+a8=a4+a10,即 16=1+a10,a10=15,故选:A3 【答案】B【解析】解:a=1,b=4,C=60,由余弦

9、定理可得:c= = = 故选:B4 【答案】D精选高中模拟试卷第 7 页,共 17 页【解析】解:由题意知圆半径 r= ,圆的方程为 2=2故选:D【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题5 【答案】A【解析】解: =(1,2), =(1,1), = +k =(1+k ,2+k ) , =0,1+k+2+k=0,解得 k=故选:A【点评】本题考查数量积和向量的垂直关系,属基础题6 【答案】【解析】选 A.设球 O 的半径为 R,矩形 ABCD 的长,宽分别为 a,b,则有 a2b 24R 22ab, ab2R2,又 V 四棱锥 PABCD S 矩形 ABC

10、DPO13 abR R3.13 23 R3 18,则 R3,23球 O 的表面积为 S4R 236,选 A.7 【答案】B【解析】解:双曲线标准方程为 ,其渐近线方程是 =0,整理得 y= x故选:B【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1” 为“0” 即可求出渐近线方程属于基础题精选高中模拟试卷第 8 页,共 17 页8 【答案】D【解析】解:双曲线 的顶点为(0,2 )和(0,2 ),焦点为(0,4)和(0,4)椭圆的焦点坐标是为(0,2 )和(0,2 ),顶点为(0,4)和(0,4)椭圆方程为 故选 D【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭

11、圆的基本性质9 【答案】C【解析】解:作出 y=2x 和 y=log x 的函数图象,如图:由图象可知当 x0a 时,2 log x0,f(x 0)=2 log x00故选:C10【答案】C【解析】解:当 y1=y2 时,对于任意 x1,x 2,都有|AB|e 恒成立,可得: =1+ln(x 2m),x 2x1e,0 1+ln(x 2m) , 精选高中模拟试卷第 9 页,共 17 页lnxx1(x1),考虑 x2m1 时1+ln( x2m) x2m,令 x2m ,化为 mxexe,xm+ 令 f(x)=x exe,则 f(x)=1 exe,可得 x=e 时,f (x)取得最大值me1故选:C1

12、1【答案】B【解析】解:考试的成绩 服从正态分布 N(105,10 2)考试的成绩 关于 =105 对称,P(95105)=0.32 ,P(115)= (10.64)=0.18,该班数学成绩在 115 分以上的人数为 0.1850=9故选:B【点评】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩 关于=105 对称,利用对称写出要用的一段分数的频数,题目得解12【答案】C【解析】令 ,则直线 : 与曲线 : 没有公共点,11exgxfkxkl1ykxCyfx等价于方程 在 上没有实数解假设 ,此时 , 又函0R0g10ekg数 的图象连续不断,由零点存在定理,可

13、知 在 上至少有一解,与“方程 在 上gx xRgxR没有实数解”矛盾,故 又 时, ,知方程 在 上没有实数解,所以 的最1k1egx大值为 ,故选 C1二、填空题13【答案】D【解析】解:把抛物线 y= x2 方程化为标准形式为 x2=8y,精选高中模拟试卷第 10 页,共 17 页焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键14【答案】 6 【解析】解:根据题意可知:f(x)2 x 是一个固定的数,记为 a,则 f(a )=6 ,f(x) 2x=a,即 f(x)=a+2 x,当 x=a 时,又a+2 a=6,a=2,f(x

14、)=2+2 x,f(x)+f( x)=2+2 x+2+2x=2x+2x+42 +4=6,当且仅当 x=0 时成立,f(x)+f( x)的最小值等于 6,故答案为:6【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题15【答案】 【解析】解:若集合 A=x|kx2+4x+4=0中只有一个元素,则 k=1 或 k=0,故错误;在同一平面直角坐标系中,y=2 x 与 y=2x 的图象关于 y 轴对称,故正确;y=( ) x 是减函数,故错误;定义在 R 上的奇函数 f(x)有 f(x)f(x)0,故正确故答案为:【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数

15、的,奇函数的图象和性质,难度中档16【答案】 ,1【解析】试题分析:函数 的图象如下图:2min,fxx精选高中模拟试卷第 11 页,共 17 页观察上图可知: 的取值范围是 。fx,1考点:函数图象的应用。17【答案】 【解析】解:根据点 A,B 的极坐标分别是(2 , ),(3, ),可得 A、B 的直角坐标分别是(3, )、( , ),故 AB 的斜率为 ,故直线 AB 的方程为 y = (x 3),即 x+3 y12=0,所以 O 点到直线 AB 的距离是 = ,故答案为: 【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题18【答案】 充分不必要

16、 【解析】解:复数 z=(a 2i)(1+i)=a+2+ (a2)i ,在复平面内对应的点 M 的坐标是(a+2,a 2),若点在第四象限则 a+20,a 20,2 a2,“a=1”是“点 M 在第四象限”的充分不必要条件,故答案为:充分不必要精选高中模拟试卷第 12 页,共 17 页【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题三、解答题19【答案】 【解析】解:(1)椭圆 C: =1,(ab0)的离心率 ,点(2, )在 C 上,可得, ,解得 a2=8,b 2=4,所求椭圆 C 方程为: (2)设直线 l:y=kx+b ,(k 0

17、,b0),A(x 1,y 1),B(x 2,y 2),M (x M,y M),把直线 y=kx+b 代入 可得(2k 2+1)x 2+4kbx+2b28=0,故 xM= = ,y M=kxM+b= ,于是在 OM 的斜率为:K OM= = ,即 KOMk= 直线 OM 的斜率与 l 的斜率的乘积为定值【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力20【答案】(1) ;(2)当 时, ;当 时,1m1emax1he1e;(3) .maxhfxeg【解析】试题分析:(1)研究函数的切线主要是利用切点作为突破口求解;(2)通过讨论函数在定义域内的单调性确定最值,要注

18、意对字母 m 的讨论;(3)比较两个函数的大小主要是转化为判断两个函数的差函数的符号,然后转化为研究差函数的单调性研究其最值试题解析:(1)设曲线 与 相切于点 ,xfeg0,Pxy由 ,知 ,解得 ,xfe01x0又可求得点 为 ,所以代入 ,得 .P, 1(2)因为 ,所以 .xhme,01xxxhemee 当 ,即 时, ,此时 在 上单调递增,10100,所以 ;max当 即 ,当 时, 单调递减,2,1x,hx精选高中模拟试卷第 13 页,共 17 页当 时, 单调递增, .1,xm0,hx0,1hme(i)当 ,即 时, ;e21max(ii)当 ,即 时, ;em当 ,即 时,

19、,此时 在 上单调递减,120hxh0,1所以 .min0hx综上,当 时, ;emax1e当 时, .1(3)当 时, ,02,xfxeg当 时,显然 ;xf当 时, ,22lnl,lnlxfxex记函数 ,1e则 ,可知 在 上单调递增,又由 知, 在221xx 0,10,2x上有唯一实根 ,且 ,则 ,即 (*),0,001021xe02xe当 时, 单调递减;当 时, 单调递增,0x,x ,所以 ,020lne结合(*)式 ,知 ,021x 0lx所以 , 2200001x 则 ,即 ,所以 .2lnxe2lnxe2e综上, .fg试题点睛:本题综合考查了利用导数研究函数的单调性、最值

20、基本思路,当比较两个函数大小的时候,就转化为两个函数的差的单调性,进一步确定最值确定符号比较大小21【答案】 【解析】(1)证明:函数 f( x)的定义域为x|x k,kZ,关于原点对称精选高中模拟试卷第 14 页,共 17 页又 f(x y)= ,所以 f( x)=f(1x) 1= = = = = ,故函数 f(x)奇函数(2)令 x=1,y= 1,则 f(2)=f1( 1)= = ,令 x=1,y= 2,则 f(3)=f1( 2)= = = ,f(x 2)= = ,f(x 4)= ,则函数的周期是 4先证明 f(x)在2,3 上单调递减,先证明当 2x3 时,f(x)0,设 2x3,则 0

21、x21,则 f(x 2)= ,即 f(x)= 0,设 2x1x23,则 f(x 1)0,f(x 2)0,f(x 2x1)0,则 f(x 1) f(x 2)= ,f(x 1)f (x 2),即函数 f(x)在2,3 上为减函数,则函数 f(x)在2,3 上的最大值为 f(2)=0,最小值为 f(3)=1【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大精选高中模拟试卷第 15 页,共 17 页22【答案】(1) 2AD;(2) 3B.【解析】考点:正余弦定理的综合应用,二次方程,三角方程.【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是

22、合理选择正、余弦定理当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.23【答案】 【解析】解:(1)因为 f(x )是 R 上的奇函数,精选高中模拟试卷第 16 页,共 17 页所以 f(0)=0,即 =0,解得 b=1;从而有 ;经检验,符合题意;(2)由(1)知,f(x)= = + ;由 y=2x 的单调性可推知 f(x)在 R 上为减函数; (3)因为 f(x)在 R 上为减函数且是奇函数,

23、从而不等式f(1+|x|)+f(x)0 等价于 f(1+|x|)f(x),即 f(1+|x|)f(x); 又因 f(x)是 R 上的减函数,由上式推得 1+|x|x,解得 xR24【答案】 2cm【解析】试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可试题解析:过圆锥的顶点 和正方体底面的一条对角线 作圆锥的截面,得圆锥的轴截面 ,正方体对SCDSEF角面 ,如图所示1CD设正方体棱长为,则 , ,1x12CDx作 于 ,则 , ,SOEFOE , ,即 ,1S:112 ,即内接正方体棱长为 2xcmcm精选高中模拟试卷第 17 页,共 17 页考点:简单组合体的结构特征

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报