收藏 分享(赏)

抚松县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:8967769 上传时间:2019-07-18 格式:DOC 页数:15 大小:511KB
下载 相关 举报
抚松县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共15页
抚松县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共15页
抚松县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共15页
抚松县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共15页
抚松县高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 15 页抚松县高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如果 是定义在 上的奇函数,那么下列函数中,一定为偶函数的是( )A BC D2 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线. 3 抛物线 y=8x2 的准线方程是( )Ay= By=2 Cx= Dy= 24 已知函数 f(x)=lg(1 x)的值域为( ,1 ,则函数 f(x)的定义域为(

2、 )A9,+) B0,+) C( 9,1) D 9,1)5 已知向量 , ,若 ,则实数 ( )(,)at(2,)bt|abtA. B. C. D. 22【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力6 已知角 的终边上有一点 P(1,3),则 的值为( )A B C D47 设集合 A1,2,3,B4,5 ,Mx|xa b,aA,bB,则 M 中元素的个数为( ) 。A3B4C5D6精选高中模拟试卷第 2 页,共 15 页8 在曲线 y=x2 上切线倾斜角为 的点是( )A(0,0) B( 2,4) C( , ) D( , )9 已知实数 x,y 满足 ,则目标函数

3、z=xy 的最小值为( )A2 B5 C6 D710i 是虚数单位,i 2015 等于( )A1 B 1 Ci Di11集合 , 是 的一个子集,当 时,若有 ,则称 为 的一个“孤5432,0SASAxAx1且x立元素”.集合 是 的一个子集, 中含 4 个元素且 中无“孤立元素”,这样的集合 共有个BBA.4 B. 5 C.6 D.712已知函数 f(x)=x 4cosx+mx2+x(m R),若导函数 f(x)在区间2,2上有最大值 10,则导函数f(x)在区间 2,2上的最小值为( )A12 B10 C 8 D6二、填空题13数据2, 1,0,1,2 的方差是 14以抛物线 y2=20

4、x 的焦点为圆心,且与双曲线: 的两条渐近线都相切的圆的方程为 15如图,在矩形 中, ,ABCD3, 在 上,若 ,3EEA则 的长=_16已知 满足 ,则 的取值范围为_.,xy41x223yx17若函数 y=ln( 2x)为奇函数,则 a= 18已知 f(x)= ,则 f( )+f( )等于 三、解答题精选高中模拟试卷第 3 页,共 15 页19已知定义在区间(0,+)上的函数 f(x)满足 f( )=f(x 1)f(x 2)(1)求 f(1)的值;(2)若当 x1 时,有 f(x) 0求证:f (x)为单调递减函数;(3)在(2)的条件下,若 f(5)= 1,求 f(x)在3,25上的

5、最小值20某城市 100 户居民的月平均用电量(单位:度),以 , , ,160,8,20,20, , , 分组的频率分布直方图如图20,4,260,820,3(1)求直方图中的值;(2)求月平均用电量的众数和中位数111121已知函数 f(x)=lnx+ ax2+b(a ,b R)精选高中模拟试卷第 4 页,共 15 页()若曲线 y=f(x)在 x=1 处的切线为 y=1,求函数 f(x)的单调区间;()求证:对任意给定的正数 m,总存在实数 a,使函数 f(x)在区间(m,+)上不单调;()若点 A(x 1,y 1),B(x 2,y 2)(x 2x 10)是曲线 f(x)上的两点,试探究

6、:当 a0 时,是否存在实数 x0(x 1,x 2),使直线 AB 的斜率等于 f(x 0)?若存在,给予证明;若不存在,说明理由22已知函数 f(x)=x 1+ (aR,e 为自然对数的底数)()若曲线 y=f(x)在点(1,f(1)处的切线平行于 x 轴,求 a 的值;()求函数 f(x)的极值;()当 a=1 的值时,若直线 l:y=kx 1 与曲线 y=f(x)没有公共点,求 k 的最大值23已知集合 A=x|x25x60,集合 B=x|6x25x+10,集合 C=x|(x m)(m+9 x)0(1)求 AB(2)若 AC=C,求实数 m 的取值范围精选高中模拟试卷第 5 页,共 15

7、 页24设函数 f(x)=ax 2+bx+c(a 0)为奇函数,其图象在点(1,f(1)处的切线与直线 x6y7=0 垂直,导函数f(x)的最小值为 12(1)求 a,b,c 的值;(2)求函数 f(x)的单调递增区间,并求函数 f(x)在 1,3上的最大值和最小值精选高中模拟试卷第 6 页,共 15 页抚松县高级中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故 是偶函数。故答案为:B2 【答案】C【解析】考点:几何体的结构特征.3 【答案】A【解析】解:整

8、理抛物线方程得 x2= y,p=抛物线方程开口向下,准线方程是 y= ,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置4 【答案】D【解析】解:函数 f(x)=lg(1x)在( ,1)上递减,由于函数的值域为(,1,则 lg(1x)1,则有 01x10,解得,9x1则定义域为 9,1),故选 D【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题5 【答案】B【解析】由 知, , ,解得 ,故选 B.|abab(2)10t1t精选高中模拟试卷第 7 页,共 15 页6 【答案】A【解析】解:点 P(1,3)在 终边上

9、,tan=3, = = = = 故选:A7 【答案】 B【解析】 由题意知 xab,aA,bB ,则 x 的可能取值为 5,6,7,8.因此集合 M 共有 4 个元素,故选 B8 【答案】D【解析】解:y=2x,设切点为(a,a 2)y=2a,得切线的斜率为 2a,所以 2a=tan45=1,a= ,在曲线 y=x2 上切线倾斜角为 的点是( , )故选 D【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题9 【答案】A【解析】解:如图作出阴影部分即为满足约束条件 的可行域,由 得 A(3,5),当直线 z=xy 平移到点 A

10、 时,直线 z=xy 在 y 轴上的截距最大,即 z 取最小值,即当 x=3,y=5 时,z=xy 取最小值为2故选 A精选高中模拟试卷第 8 页,共 15 页10【答案】D【解析】解:i 2015=i5034+3=i3=i,故选:D【点评】本题主要考查复数的基本运算,比较基础11【答案】C【解析】试题分析:根据题中“孤立元素”定义可知,若集合 B 中不含孤立元素,则必须没有三个连续的自然数存在,所有 B 的可能情况为: , , , , , 共 6 个。故0,134,50,14,2350,41,25选 C。考点:1.集合间关系;2.新定义问题。12【答案】C【解析】解:由已知得 f(x)=4x

11、 3cosxx4sinx+2mx+1,令 g(x)=4x 3cosxx4sinx+2mx 是奇函数,由 f(x)的最大值为 10 知:g(x)的最大值为 9,最小值为9,从而 f(x)的最小值为 9+1=8故选 C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大二、填空题13【答案】 2 精选高中模拟试卷第 9 页,共 15 页【解析】解:数据2, 1, 0,1,2, = ,S 2= (2 0) 2+(1 0) 2+(00) 2+(10) 2+(2 0) 2=2,故答案为 2;【点评】本题考查方差的定义与意义:一般地设 n 个数据,x 1,x 2,x n 的平均数 ,是一道

12、基础题;14【答案】 (x5) 2+y2=9 【解析】解:抛物线 y2=20x 的焦点坐标为(5,0),双曲线: 的两条渐近线方程为 3x4y=0由题意,r =3,则所求方程为(x 5) 2+y2=9故答案为:(x5) 2+y2=9【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题15【答案】212【解析】在 RtABC 中,BC3,AB ,所以BAC 60.3因为 BEAC, AB ,所以 AE ,在EAD 中,EAD30,AD 3,由余弦定理知,332ED2AE 2AD 22AEAD cosEAD 92 3 ,故 ED .34 32 32 214 21216【

13、答案】 ,6【解析】精选高中模拟试卷第 10 页,共 15 页考点:简单的线性规划【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1) 表示点2xy与原点 的距离;(2) 表示点 与点 间的距离;(3) 可表示,xy0,22xayb,xy,ab点 与 点连线的斜率;(4) 表示点 与点 连线的斜率.,17【答案】 4 【解析】解:函数 y=ln( 2x)为奇函数,可得 f( x)=f(x),ln( +2x)= ln( 2x)ln( +2x)=ln ( )=ln( )可得

14、 1+ax24x2=1,解得 a=4故答案为:418【答案】 4 【解析】解:由分段函数可知 f( )=2 = f( )=f( +1)=f( )=f( )=f( )=2 = ,精选高中模拟试卷第 11 页,共 15 页f( ) +f( )= + 故答案为:4三、解答题19【答案】 【解析】解:(1)令 x1=x20,代入得 f(1)=f(x 1)f(x 1)=0,故 f(1)=0 (4 分)(2)证明:任取 x1,x 2(0 ,+),且 x1x 2,则 1,由于当 x1 时,f(x)0,所以 f( )0,即 f(x 1) f(x 2)0,因此 f(x 1)f(x 2),所以函数 f(x)在区间

15、(0, +)上是单调递减函数(8 分)(3)因为 f(x)在(0,+ )上是单调递减函数,所以 f(x)在3,25 上的最小值为 f(25)由 f( )=f ( x1) f(x 2)得,f(5)=f( ) =f(25) f(5),而 f(5)=1,所以 f(25)= 2即 f(x)在3 ,25 上的最小值为2(12 分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键20【答案】() ;()众数是 ,中位数为 0.75x23024【解析】试题分析:()利用频率之和为一可求得的值;()众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位

16、数1试题解析:(1)由直方图的性质可得 ,(0.2.950.1.25025)01x 0.75x精选高中模拟试卷第 12 页,共 15 页考点:频率分布直方图;中位数;众数21【答案】 【解析】解:()由已知得 解得 此时 , (x0)令 f(x)=0,得 x=1,f (x),f(x)的变化情况如下表:x (0,1) 1 (1,+)f( x) + 0 f(x) 单调递增 极大值 单调递减所以函数 f(x)的增区间为( 0,1),减区间为(1,+ )() (x0)(1)当 a0 时,f(x)0 恒成立,此时,函数 f(x)在区间(0,+ )上单调递增,不合题意,舍去(2)当 a0 时,令 f(x)

17、=0,得 ,f(x),f (x)的变化情况如下表:x(0, ) ( ,+)f( x) + 0 f(x) 单调递增 极大值 单调递减所以函数 f(x)的增区间为( 0, ),减区间为( ,+)要使函数 f(x)在区间(m,+)上不单调,须且只须 m,即 精选高中模拟试卷第 13 页,共 15 页所以对任意给定的正数 m,只须取满足 的实数 a,就能使得函数 f(x)在区间(m,+)上不单调()存在实数 x0(x 1,x 2),使直线 AB 的斜率等于 f(x 0)证明如下:令 g(x)=lnx x+1(x0),则 ,易得 g(x)在 x=1 处取到最大值,且最大值 g(1)=0,即 g(x)0,

18、从而得 lnxx1 (*)由 ,得 令 , ,则 p(x),q(x)在区间x 1,x 2上单调递增且 ,结合(*)式可得, ,令 h(x)=p(x)+q (x),由以上证明可得,h(x)在区间x 1,x 2上单调递增,且 h(x 1)0,h(x 2)0,所以函数 h(x)在区间(x 1,x 2)上存在唯一的零点 x0,即 成立,从而命题成立(注:在()中,未计算 b 的值不扣分)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想22【答案】 精选高中模拟试卷第 14 页,共 15 页

19、【解析】解:()由 f(x) =x1+ ,得 f(x)=1 ,又曲线 y=f(x)在点(1,f( 1)处的切线平行于 x 轴,f(1)=0,即 1 =0,解得 a=e()f (x)=1 ,当 a0 时, f(x)0,f(x)为(,+)上的增函数,所以 f(x)无极值;当 a0 时,令 f(x)=0 ,得 ex=a,x=lna,x(,lna ),f (x)0 ;x(lna,+),f(x)0;f( x)在 ( ,lna)上单调递减,在(lna,+)上单调递增,故 f(x)在 x=lna 处取到极小值,且极小值为 f(lna)=lna,无极大值综上,当 a0 时,f(x)无极值;当 a0 时,f (

20、x)在 x=lna 处取到极小值 lna,无极大值()当 a=1 时,f(x)=x1+ ,令 g(x)=f(x)( kx1)=(1k)x+ ,则直线 l:y=kx 1 与曲线 y=f( x)没有公共点,等价于方程 g(x)=0 在 R 上没有实数解假设 k1,此时 g(0)=10,g( )=1+ 0,又函数 g(x)的图象连续不断,由零点存在定理可知 g(x)=0 在 R 上至少有一解,与“方程 g(x)=0 在 R 上没有实数解”矛盾,故 k1又 k=1 时,g(x)= 0,知方程 g(x)=0 在 R 上没有实数解,所以 k 的最大值为 123【答案】 【解析】解:由合 A=x|x25x6

21、0,集合 B=x|6x25x+10,集合 C=x|(x m)(m+9 x)0 A=x|1x6, ,C=x|mxm+9(1) ,(2)由 AC=C,可得 AC精选高中模拟试卷第 15 页,共 15 页即 ,解得3 m124【答案】 【解析】解:(1)f(x)为奇函数,f( x)= f(x),即 ax3bx+c=ax3bxc,c=0f(x)=3ax 2+b 的最小值为 12,b=12又直线 x6y7=0 的斜率为 ,则 f(1)=3a+b= 6,得 a=2,a=2,b= 12, c=0;(2)由(1)知 f(x)=2x 312x,f (x)=6x 212=6(x+ )(x ),列表如下:x (, ) ( ,)( ,+)f(x) + 0 0 +f(x) 增 极大 减 极小 增所以函数 f(x)的单调增区间是( , )和( ,+ )f( 1)=10,f( )= 8 ,f (3)=18,f( x)在 1,3上的最大值是 f(3)=18,最小值是 f( )= 8

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报