1、精选高中模拟试卷第 1 页,共 16 页汉南区高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如图是一容量为 100 的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A11 B11.5 C12 D12.52 已知向量 =(1,2), =(x,4),若 ,则 x=( )A 4 B 4 C 2 D 23 某三棱锥的三视图如图所示,该三棱锥的表面积是 A、 B、 8653065C、 D、 114 已知抛物线 : 的焦点为 , 是抛物线 的准线上的一点,且 的纵坐标为正数,28yxFPCP是直线 与抛物线 的一个交点,若 ,则直线 的
2、方程为( )QPFC2QFA B C D0xy0y20xy20xy5 已知全集 U=R,集合 A=1,2,3,4,5,B=x R|x3,图中阴影部分所表示的集合为( )A1 B1,2 C1,2,3 D0,1,26 如图,圆 O 与 x 轴的正半轴的交点为 A,点 C、B 在圆 O 上,且点 C 位于第一象限,点 B 的坐标为(, ),AOC=,若|BC|=1,则 cos2 sin cos 的值为( )精选高中模拟试卷第 2 页,共 16 页A B C D7 下列结论正确的是( )A若直线 l平面 ,直线 l平面 ,则 B若直线 l平面 ,直线 l平面 ,则 C若直线 l1,l 2 与平面 所成
3、的角相等,则 l1l2D若直线 l 上两个不同的点 A,B 到平面 的距离相等,则 l8 函数 是周期为 4 的奇函数,且在 上的解析式为 ,则()fxR 0,(1),01)sin2xxf-=p0,由零点存在定理,可得 f(x )在(1,0)有且只有一个零点;则由题意可得 x0 时,f(x)=axlnx 有且只有一个零点,即有 有且只有一个实根。lna令 ,21ln,gxx当 xe 时,g(x )0,g(x)递增。即有 x=e 处取得极大值 ,也为最大值,且为 ,1e如图 g(x)的图象,当直线 y=a(a0)与 g(x)的图象只有一个交点时,则 .1e回归原问题,则原问题中 .精选高中模拟试
4、卷第 11 页,共 16 页点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然 后代入该段的解析式求值,当出现 f(f(a)的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围15【答案】 【解析】解:两个相交平面的公交点一定在平面的交线上,故错误;经过空间不共线三点有且只有一个平面,故错误;过两平行直线有且只有一个平面,正确;在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是,故答案为
5、:16【答案】 (x,y)|xy0,且1x 2, y1 【解析】解:图中的阴影部分的点设为(x,y)则x,y)| 1x0, y0 或 0x2,0y1=(x,y)|xy 0 且1x 2, y1故答案为:(x,y)|xy0,且1x 2, y117【答案】 |0 1 【解析】 , |0 1。18【答案】 0,2x, sin【解析】试题分析:“(,)x, si1x”的否定是 0,2x, sin1考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:找到命题所含的量词,没有量词的要结合精选高中模拟试卷第 12 页,共 16 页命题的含义加上量词,再进行否定;对原命题的结论进行否定.(2
6、)判定全称命题“xM,p(x)”是真命题,需要对集合 M 中的每个元素 x,证明 p(x)成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值 x0,使 p(x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个 xx 0,使 p(x 0)成立即可,否则就是假命题.三、解答题19【答案】【解析】解:当 a=7 时, |PM|+|PN|MN|=1410,因此坐标平面内不存在黄金直线;当 a=5 时,|PM|+|PN|=10=|MN| ,因此线段 MN 上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;当 a=3 时,|PM|+|PN|=106=|MN|,黄
7、金点的轨迹是个椭圆,正确;当 a=0 时,点 M 与 N 重合为(0,0),|PM|+|PN|=10=2|PM|,点 P 在以原点为圆心、5 为半径的圆上,因此坐标平面内有且无数条黄金直线故答案为:【点评】本题考查了新定义“黄金直线”、“ 黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题20【答案】 【解析】解:设至少需要同时开 x 个窗口,则根据题意有, 由得,c=2b,a=75b,代入得,75b+10b20bx,x ,即至少同时开 5 个窗口才能满足要求21【答案】【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;
8、本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.精选高中模拟试卷第 13 页,共 16 页(2)由(1)中知曲线 是椭圆,将直线 : 代入C2lmkxy椭圆 的方程 中,得12432yx08)4(mkk由直线 与椭圆 有且仅有一个公共点知,2l,)(622整理得 7 分3且 ,21|kd21|kd当 时,设直线 的倾斜角为 ,则 ,即0l|tan|213dd|213kd212121321 |4|)()( kmkdd 精选高中模拟试卷第 14 页,共 16 页10 分|1|643|2m 当 时,km0k3| , 11 分43| 4)(21d当 时,四边形 为矩形,此
9、时 ,20PQF21 3212d 12 分)(321d综上 、 可知, 存在最大值,最大值为 13 分 321)(d422【答案】 【解析】解:(1)当 时, , ;对于 x1,e,有 f(x)0,f(x)在区间1 ,e上为增函数, , (2)在区间(1,+)上,函数 f(x)是 f1(x),f 2(x)的“活动函数” ,则 f1(x)f(x)f 2(x)令 0,对 x(1,+)恒成立,且 h(x)=f 1(x)f(x)= 0 对 x(1,+)恒成立,1)若 ,令 p(x)=0 ,得极值点 x1=1, ,当 x2x 1=1,即 时,在( x2,+ )上有 p(x)0,此时 p(x)在区间(x
10、2,+)上是增函数,并且在该区间上有 p(x)(p(x 2),+),不合题意;当 x2x 1=1,即 a1 时,同理可知,p(x)在区间(1,+)上,有 p(x)(p(1),+),也不合题意;2)若 ,则有 2a10,此时在区间( 1,+ )上恒有 p(x)0,从而 p(x)在区间(1,+)上是减函数;要使 p(x)0 在此区间上恒成立,只须满足 ,精选高中模拟试卷第 15 页,共 16 页所以 a 又因为 h(x)= x+2a = 0,h(x)在(1,+)上为减函数,h(x)h(1)= +2a0,所以 a综合可知 a 的范围是 , 【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决
11、恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一23【答案】【解析】解:(1)A、B、C 为ABC 的三个内角,且 cosBcosCsinBsinC=cos(B+C)= ,B+C= ,则 A= ;(2)a=2 ,b+c=4,cosA= ,由余弦定理得:a 2=b2+c22bccosA=b 2+c2+bc=(b+c) 2bc,即 12=16bc ,解得:bc=4,则 SABC = bcsinA= 4 = 【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键24【答案】【解析】解:(1)精选高中模拟试卷第 16 页,共 16 页根据散点图可知,x 与 y 是负相关(2)根据提供的数据,先求数据( 1,y 1),( 2,y 2),( 3,y 3),( 4,y 4),( 5,y 5)的回归直线方程,ycd, 2.17, 811374y 38(2.17)1161.87.a c 数据( i,y i)(i1,2,3,4,5)的回归直线方程为 y2.1761.87,又 ix ,2iy 关于 x 的回归方程为 y2.17x 261.87.(3)当 y0 时,x 5.3.估计最多用 5.3 千克水61.872.176187217