收藏 分享(赏)

揭东区高级中学2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:8967525 上传时间:2019-07-18 格式:DOC 页数:17 大小:682KB
下载 相关 举报
揭东区高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共17页
揭东区高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共17页
揭东区高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共17页
揭东区高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共17页
揭东区高级中学2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 17 页揭东区高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知函数 f(x)是(,0)(0,+ )上的奇函数,且当 x0 时,函数的部分图象如图所示,则不等式 xf(x)0 的解集是( )A(2 , 1)(1,2) B( 2,1)(0,1) (2,+ )C(,2)(1,0)(1,2) D(,2)(1,0)(0,1)(2,+)2 已知全集为 R,集合 A=x|( ) x1,B=x|x 26x+80,则 A( RB)=( )Ax|x0 Bx|2x4 Cx|0x2 或 x4 Dx|0x2 或 x43 已知双曲线 =

2、1 的一个焦点与抛物线 y2=4 x 的焦点重合,且双曲线的渐近线方程为 y= x,则该双曲线的方程为( )A =1 B y2=1 Cx 2 =1 D =14 某几何体的三视图如图所示,则该几何体的体积为( )A B C D1633161683328精选高中模拟试卷第 2 页,共 17 页【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力5 在二项式(x 3 ) n(nN *)的展开式中,常数项为 28,则 n 的值为( )A12 B8 C6 D46 若关于 的不等式 的解集为 ,则参数 的取值范围为( )07|2|1| mxRmA B C D),4()

3、,)4,(4,(【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.7 设 a,b 为实数,若复数 ,则 ab=( )A2 B1 C1 D28 用反证法证明命题“a,b N,如果 ab 可被 5 整除,那么 a,b 至少有 1 个能被 5 整除”则假设的内容是( )Aa,b 都能被 5 整除 Ba,b 都不能被 5 整除Ca, b 不能被 5 整除 Da,b 有 1 个不能被 5 整除9 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于 P,直线 PF1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A B C

4、D10设集合 , ,则 ( )|2xR|10xZABA. B. C. D. |12x12,1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题11已知直线 y=ax+1 经过抛物线 y2=4x 的焦点,则该直线的倾斜角为( )A0 B C D12若函数 2sin2fxx的图象关于直线 12x对称,且当1273x, , 1时, 12fxf,则 f等于( )A B 2 C. 62 D 24二、填空题13考察正三角形三边中点及 3 个顶点,从中任意选 4 个点,则这 4 个点顺次连成平行四边形的概率等于 精选高中模拟试卷第 3 页,共 17 页14在ABC 中,角 A,B ,C 所对

5、的边分别为 a,b,c,若ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)tanAtanB tanC=tanA+tanB+tanCtanA+tanB+tanC 的最小值为 3tanA,tanB ,tanC 中存在两个数互为倒数若 tanA:tanB:tanC=1 :2:3,则 A=45当 tanB1= 时,则 sin2CsinAsinB15如图所示,正方体 ABCDABCD的棱长为 1,E、F 分别是棱 AA,CC 的中点,过直线 EF 的平面分别与棱 BB、DD 交于 M、N,设 BM=x,x 0,1,给出以下四个命题:平面 MENF平面 BDDB;当且仅当 x= 时,

6、四边形 MENF 的面积最小;四边形 MENF 周长 l=f(x),x 0,1是单调函数;四棱锥 CMENF 的体积 v=h(x)为常函数;以上命题中真命题的序号为 16用描述法表示图中阴影部分的点(含边界)的坐标的集合为 精选高中模拟试卷第 4 页,共 17 页17已知 sin+cos= ,且 ,则 sincos 的值为 18已知复数 ,则 1+z50+z100= 三、解答题19(本小题满分 12 分)若二次函数 满足 ,20fxabc+12fxfx且 .01f(1)求 的解析式;x(2)若在区间 上,不等式 恒成立,求实数 的取值范围,2fxm20 已知不等式 的解集为 或(1)求 , 的

7、值(2)解不等式 .21如图,在四棱锥 PABCD 中,PD平面 ABCD,PD=DC=BC=1,AB=2,ABDC, BCD=90(1)求证:PCBC;(2)求点 A 到平面 PBC 的距离精选高中模拟试卷第 5 页,共 17 页22已知函数 , , ()xfea21()xgaeR(1)求函数 的单调区间;(2)若存在 ,使得 成立,求的取值范围;0,2()f(3)设 , 是函数 的两个不同零点,求证: 1xx12x23(1)计算:( ) 0+lne +8 +log62+log63;(2)已知向量 =(sin,cos), =( 2,1),满足 ,其中 ( ,),求 cos的值精选高中模拟试卷

8、第 6 页,共 17 页24某游乐场有 A、B 两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏 A,丙丁两人各自独立进行游戏 B已知甲、乙两人各自闯关成功的概率均为 ,丙、丁两人各自闯关成功的概率均为 (1)求游戏 A 被闯关成功的人数多于游戏 B 被闯关成功的人数的概率;(2)记游戏 A、B 被闯关总人数为 ,求 的分布列和期望精选高中模拟试卷第 7 页,共 17 页揭东区高级中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式 xf(x)0 的解为: 或解得

9、:x(, 2)(1,0)(0,1)(2,+)故选:D2 【答案】C【解析】解: 1= ,x0,A=x|x0;又 x26x+80(x 2)(x4) 0,2x4B=x|2x4,RB=x|x2 或 x4,ARB=x|0x2 或 x4,故选 C3 【答案】B【解析】解:已知抛物线 y2=4 x 的焦点和双曲线的焦点重合,则双曲线的焦点坐标为( ,0),即 c= ,又因为双曲线的渐近线方程为 y= x,则有 a2+b2=c2=10 和 = ,精选高中模拟试卷第 8 页,共 17 页解得 a=3,b=1所以双曲线的方程为: y2=1故选 B【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用属于

10、基础题4 【答案】D【解析】由三视图知几何体为一个底面半径为 2 高为 4 的半圆柱中挖去一个以轴截面为底面高为 2 的四棱锥,因此该几何体的体积为 ,故选 D2132483V5 【答案】B【解析】解:展开式通项公式为 Tr+1= (1) rx3n4r,则二项式(x 3 ) n(nN *)的展开式中,常数项为 28, ,n=8,r=6故选:B【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题6 【答案】A7 【答案】C【解析】解: ,因此 ab=1故选:C8 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题

11、时,可以设其否定成立进行推证精选高中模拟试卷第 9 页,共 17 页命题“ a,bN,如果 ab 可被 5 整除,那么 a,b 至少有 1 个能被 5 整除”的否定是“ a,b 都不能被 5 整除”故应选 B【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧9 【答案】D【解析】解:设 F2为椭圆的右焦点由题意可得:圆与椭圆交于 P,并且直线 PF1(F 1为椭圆的左焦点)是该圆的切线,所以点 P 是切点,所以 PF2=c 并且 PF1PF 2又因为 F1F2=2c,所以PF 1F2=30,所以 根据椭圆的定义可得|PF 1|+|PF2|=2a,所以|PF

12、2|=2ac所以 2ac= ,所以 e= 故选 D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义10【答案】D【解析】由绝对值的定义及 ,得 ,则 ,所以 ,故选 D.|2x2x|2Ax1,2AB11【答案】D【解析】解:抛物线 y2=4x 的焦点(1,0),直线 y=ax+1 经过抛物线 y2=4x 的焦点,可得 0=a+1,解得a=1,直线的斜率为1,该直线的倾斜角为: 故选:D【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力12【答案】C【解析】精选高中模拟试卷第 10 页,共 17 页考点:函数的图象与性质.【方法点晴】本题

13、主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型首先利用数形结合思想和转化化归思想可得 21kZ,解得 3,从而 2sin3fxx,再次利用数形结合思想和转化化归思想可得 122xfxf, , , 关于直线 1对称,可得 126,从而12 6sin3f 二、填空题13【答案】 【解析】解:从等边三角形的三个顶点及三边中点中随机的选择 4 个,共有 =15 种选法,其中 4 个点构成平行四边形的选法有 3 个,4 个点构成平行四边形的概率 P= = 故答案为: 【点评】本题考查古典概型及其概率计算公式的应用,

14、是基础题确定基本事件的个数是关键14【答案】 【解析】解:由题意知:A ,B ,C ,且 A+B+C=tan(A+B)=tan(C)=tanC ,又tan(A+B)= ,精选高中模拟试卷第 11 页,共 17 页tanA+tanB=tan(A+B)(1tanAtanB)=tanC (1tanAtanB)=tanC+tanAtanBtanC ,即 tanA+tanB+tanC=tanAtanBtanC,故正确;当 A= ,B=C= 时,tanA+tanB+tanC= 3 ,故错误;若 tanA,tanB ,tanC 中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故

15、错误;由,若 tanA:tanB :tanC=1:2:3,则 6tan3A=6tanA,则 tanA=1,故 A=45,故正确;当 tanB1= 时, tanAtanB=tanA+tanB+tanC,即 tanC= ,C=60 ,此时 sin2C= ,sinAsinB=sinAsin(120A )=sinA ( cosA+ sinA)= sinAcosA+ sin2A= sin2A+ cos2A= sin(2A 30) ,则 sin2CsinAsinB故正确;故答案为:【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档15【答案】 【解析】解:连结 B

16、D,BD ,则由正方体的性质可知,EF平面 BDDB,所以平面 MENF平面BDDB,所以正确连结 MN,因为 EF平面 BDDB,所以 EFMN,四边形 MENF 的对角线 EF 是固定的,所以要使面积最小,则只需 MN 的长度最小即可,此时当 M 为棱的中点时,即 x= 时,此时 MN 长度最小,对应四边形MENF 的面积最小所以正确因为 EFMN ,所以四边形 MENF 是菱形当 x0, 时,EM 的长度由大变小当 x ,1 时,EM的长度由小变大所以函数 L=f(x)不单调所以 错误连结 CE,CM,CN,则四棱锥则分割为两个小三棱锥,它们以 CEF 为底,以 M,N 分别为顶点的两个

17、小棱锥因为三角形 CEF 的面积是个常数M,N 到平面 CEF 的距离是个常数,所以四棱锥 CMENF 的体积 V=h( x)为常函数,所以正确故答案为:精选高中模拟试卷第 12 页,共 17 页【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高16【答案】 (x,y)|xy0,且1x 2, y1 【解析】解:图中的阴影部分的点设为(x,y)则x,y)| 1x0, y0 或 0x2,0y1=(x,y)|xy 0 且1x 2, y1故答案为:(x,y)|xy0,且1x 2, y117

18、【答案】 【解析】解:sin+cos= , ,sin 2+2sin cos+cos 2= ,2sincos= 1= ,且 sincos,sincos= = 故答案为: 18【答案】 i 精选高中模拟试卷第 13 页,共 17 页【解析】解:复数 ,所以 z2=i,又 i2=1,所以 1+z50+z100=1+i25+i50=1+i1=i;故答案为:i【点评】本题考查了虚数单位 i 的性质运用;注意 i2=1三、解答题19【答案】(1) ;(2) =+1fxm【解析】试题分析:(1)根据二次函数 满足 ,利用多项式相等,即0faxbc+12fxfx可求解 的值,得到函数的解析式;(2)由 恒成立

19、,转化为 ,设,ab1,m31,只需 ,即可而求解实数 的取值范围g31xming试题解析:(1) 满足20fxabc,fc,解得 ,2,1f xabx1,ab故 .2=+1x考点:函数的解析式;函数的恒成立问题.【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键.20【答案】 【解析】解:(1)因为不等式 的解集为 或所以

20、 , 是方程 的两个解所以 ,解得精选高中模拟试卷第 14 页,共 17 页(2)由(1)知原不等式为 ,即 ,当 时,不等式解集为当 时,不等式解集为 ;当 时,不等式解集为 ;21【答案】 【解析】解:(1)证明:因为 PD平面 ABCD,BC 平面 ABCD,所以 PDBC由BCD=90,得 CDBC,又 PDDC=D, PD、DC平面 PCD,所以 BC平面 PCD因为 PC平面 PCD,故 PCBC(2)(方法一)分别取 AB、PC 的中点 E、F,连 DE、DF,则:易证 DECB,DE平面 PBC,点 D、E 到平面 PBC 的距离相等又点 A 到平面 PBC 的距离等于 E 到

21、平面 PBC 的距离的 2 倍由(1)知:BC平面 PCD,所以平面 PBC平面 PCD 于 PC,因为 PD=DC,PF=FC,所以 DFPC,所以 DF平面 PBC 于 F易知 DF= ,故点 A 到平面 PBC 的距离等于 (方法二)等体积法:连接 AC设点 A 到平面 PBC 的距离为 h因为 ABDC ,BCD=90,所以ABC=90从而 AB=2,BC=1,得ABC 的面积 SABC =1由 PD平面 ABCD 及 PD=1,得三棱锥 PABC 的体积 因为 PD平面 ABCD,DC平面 ABCD,所以 PDDC又 PD=DC=1,所以 由 PC BC,BC=1,得PBC 的面积

22、由 VAPBC=VPABC, ,得 ,故点 A 到平面 PBC 的距离等于 【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力精选高中模拟试卷第 15 页,共 17 页22【答案】() 的单调递增区间为 ,单调递减区间为 ;() 或 ;()fx(0,)(,0)1a0()证明见解析【解析】试题解析: (1) ()1xfe令 ,得 ,则 的单调递增区间为 ;111.Com()0fx()f (0,)令 ,得 ,则 的单调递减区间为 (2)记 ,则 ,()Ffxg21xFea1()2xe , ,0xxe()0x函数 为 上的增函数,()F

23、,)当 时, 的最小值为 0,2( 2()Fa存在 ,使得 成立,x)fxg 的最小值小于 0,即 ,解得 或 1()20a0(3)由(1)知, 是函数 的极小值点,也是最小值点,即最小值为 ,(f (0)1fa则只有 时,函数 由两个零点,不妨设 ,a)f 12x易知 , ,1x2 ,2()(fffxf22()()xeaea22xe令 ( ),he0精选高中模拟试卷第 16 页,共 17 页考点:导数与函数的单调性;转化与化归思想 23【答案】 【解析】(本小题满分 12 分)解析:(1)原式=1+15+2+1=0 ; (6 分)(2)向量 =(sin,cos), =( 2,1),满足 ,s

24、in=2cos ,(9 分)又 sin2+cos2+=1,由解得 cos2= ,(11 分)( ,),cos= (12 分)【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力24【答案】 精选高中模拟试卷第 17 页,共 17 页【解析】解:(1) (2) 可取 0,1,2,3,4,P(=0)=(1 ) 2(1 ) 2= ;P(=1)= ( )(1 ) ( )2+ (1 ) 2 = ;P(=2)= + += ;P(=3)= = ;P(=4)= = 的分布列为: 0 1 2 3 4PE=0 +1 +2 +3 +4 = 【点评】本题主要考查 n 次独立重复实验中恰好发生 k 次的概率,等可能事件的概率,体现了分类讨论的数学思想,属于中档题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报