1、精选高中模拟试卷第 1 页,共 16 页什邡市高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 由小到大排列的一组数据 x1,x 2,x 3,x 4,x 5,其中每个数据都小于1,则样本 1,x 1, x2,x 3,x 4,x 5的中位数为( )A B C D2 已知随机变量 X 服从正态分布 N(2, 2),P (0X4)=0.8,则 P(X4)的值等于( )A0.1 B0.2 C0.4 D0.63 已知 x,y 满足约束条件 ,使 z=ax+y 取得最小值的最优解有无数个,则 a 的值为( )A3 B3 C 1 D14 若复数 z 满足 iz=2
2、+4i,则在复平面内,z 对应的点的坐标是( )A(2,4) B( 2, 4) C(4, 2) D(4,2)5 若关于 的不等式 的解集为 ,则参数 的取值范围为( )x07|1| mxRmA B C D),(),),(,(【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.6 “方程 + =1 表示椭圆”是“3m5”的( )条件A必要不充分 B充要 C充分不必要 D不充分不必要7 已知集合 表示的平面区域为 ,若在区域 内任取一点 P(x,y),则点P 的坐标满足不等式 x2+y22 的概率为( )A B C D8 已知某运动物
3、体的位移随时间变化的函数关系为 ,设物体第 n 秒内的位移为 an,则数列a n是( )A公差为 a 的等差数列 B公差为 a 的等差数列精选高中模拟试卷第 2 页,共 16 页C公比为 a 的等比数列 D公比为 的等比数列9 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数 f(x)= 被称为狄利克雷函数,其中 R 为实数集,Q 为有理数集,则关于函数 f(x)有如下四个命题:f (f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数 T,f(x+T)=f(x)对任意的 x=R 恒成立;存在三个点A(x 1,f(x 1),B(x 2, f(x 2),C (x 3,f (x 3
4、),使得 ABC 为等边三角形其中真命题的个数有( )A1 个 B2 个 C3 个 D4 个10有 30 袋长富牛奶,编号为 1 至 30,若从中抽取 6 袋进行检验,则用系统抽样确定所抽的编号为( )A3,6,9,12,15,18 B4,8,12,16,20,24C2,7,12,17,22,27 D6,10,14,18,22,2611下列函数在其定义域内既是奇函数又是增函数的是( )A B C D12设直线 x=t 与函数 f(x)=x 2,g(x)=lnx 的图象分别交于点 M,N ,则当|MN| 达到最小时 t 的值为( )A1 B C D二、填空题13(文科)与直线 垂直的直线的倾斜角
5、为_310xy14“ 黑白配 ”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负现在甲乙丙三人一起玩“黑白配” 游戏设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 15直线 ax+ by=1 与圆 x2+y2=1 相交于 A,B 两点(其中 a,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点 P(a,b)与点(1,0)之间距离的最小值为 精选高中模拟试卷第
6、3 页,共 16 页16在 中, , , 为 的中点, ,则 的长为_.ABC902BCM1sin3BAMC17直线 2x+3y+6=0 与坐标轴所围成的三角形的面积为 18已知函数 322()7fxabxa在 1x处取得极小值 10,则 ba的值为 三、解答题19实数 m 取什么数值时,复数 z=m+1+(m1)i 分别是:(1)实数?(2)虚数?(3)纯虚数?20衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取 100 名后按年龄分组:第 1 组 20,5),第 2 组 5,30),第 3 组 0,5),第 4 组 35,0),第5 组 40,,得
7、到的频率分布直方图如图所示.(1)若从第 3,4,5 组中用分层抽样的方法抽取 6 名志愿者参加广场的宣传活动,则应从第 3,4,5 组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第 3,4 组的志愿者中随机抽取 2 名志愿者介绍宣传经验,求第 4 组至少有一名志愿者被抽中的概率.精选高中模拟试卷第 4 页,共 16 页21已知函数 f(x)=sinx 2 sin2(1)求 f(x)的最小正周期;(2)求 f(x)在区间0, 上的最小值22(本小题满分 12 分)已知在 中,角 所对的边分别为 且ABC, , cba.)3(sin)(sin( cbabBA()求角 的大小;() 若
8、, 的面积为 ,求 .2,23ABC 中,角 A,B,C 所对的边之长依次为 a,b,c ,且 cosA= ,5(a 2+b2c2)=3 ab()求 cos2C 和角 B 的值;精选高中模拟试卷第 5 页,共 16 页()若 ac= 1,求ABC 的面积24(本小题满分 12 分)如图,四棱锥 中,底面 是边长为 的菱形,且 ,侧面 为等边三角形,PABCDAB260oABCPDC且与底面 垂直, 为 的中点M()求证: ;()求直线 与平面 所成角的正弦值精选高中模拟试卷第 6 页,共 16 页什邡市高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】
9、C【解析】解:因为 x1x 2x 3x 4x 51,题目中数据共有六个,排序后为 x1x 3x 51 x4 x2,故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,故这组数据的中位数是 (x 5+1)故选:C【点评】注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数2 【答案】A【解析】解:随机变量 服从正态分布 N(2,o 2),正态曲线的对称轴是 x=2P(0X4) =0.8,P( X 4)= (10.8)=0.1,故选 A3 【答案】D【解析】解:作出不等式组对应的平面区域如图:
10、(阴影部分)由 z=ax+y,得 y=ax+z,若 a=0,此时 y=z,此时函数 y=z 只在 B 处取得最小值,不满足条件若 a0,则目标函数的斜率 k=a0平移直线 y=ax+z,由图象可知当直线 y=ax+z 和直线 x+y=1 平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即 a=1若 a0,则目标函数的斜率 k=a0平移直线 y=ax+z,由图象可知当直线 y=ax+z,此时目标函数只在 C 处取得最小值,不满足条件综上 a=1故选:D精选高中模拟试卷第 7 页,共 16 页【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用 z 的几何意
11、义是解决本题的关键注意要对 a 进行分类讨论4 【答案】C【解析】解:复数 z 满足 iz=2+4i,则有 z= = =42i,故在复平面内,z 对应的点的坐标是(4, 2),故选 C【点评】本题主要考查两个复数代数形式的乘除法,虚数单位 i 的幂运算性质,复数与复平面内对应点之间的关系,属于基础题5 【答案】A6 【答案】C【解析】解:若方程 + =1 表示椭圆,则满足 ,即 ,即3 m 5 且 m1,此时3m 5 成立,即充分性成立,当 m=1 时,满足 3m5,但此时方程 + =1 即为 x2+y2=4 为圆,不是椭圆,不满足条件即必要性不成立精选高中模拟试卷第 8 页,共 16 页故“
12、方程 + =1 表示椭圆”是“3m5”的充分不必要条件故选:C【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题7 【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为AOB,由 ,解得 ,即 B(4, 4),由 ,解得 ,即 A( , ),直线 2x+y4=0 与 x 轴的交点坐标为(2,0),则OAB 的面积 S= = ,点 P 的坐标满足不等式 x2+y22 区域面积 S= ,则由几何概型的概率公式得点 P 的坐标满足不等式 x2+y22 的概率为 = ,故选:D精选高中模拟试卷第 9 页,共 16 页【点评】
13、本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件 A 的基本事件对应的“ 几何度量” N(A),再求出总的基本事件对应的 “几何度量 ”N,最后根据几何概型的概率公式进行求解8 【答案】A【解析】解: ,a n=S( n) s(n1)=a nan1= =a数列a n是以 a 为公差的等差数列故选 A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用9 【答案】 D【解析】解:当 x 为有理数时,f(x)=1;当 x 为无理数时,f (x)=0当 x 为有理数时,f(f(x)=f(1)=1;精选高中模拟试卷第 10 页,共
14、 16 页当 x 为无理数时,f(f(x)=f(0)=1即不管 x 是有理数还是无理数,均有 f(f (x)=1,故 正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意 xR,都有 f(x)=f(x),故 正确; 若 x 是有理数,则 x+T 也是有理数; 若 x 是无理数,则 x+T 也是无理数根据函数的表达式,任取一个不为零的有理数 T,f(x+T)=f(x)对 xR 恒成立,故 正确; 取 x1= ,x 2=0,x 3= ,可得 f(x 1)=0,f(x 2)=1,f(x 3)=0A( ,0), B(0,1), C( ,0),恰好ABC 为等边三角形,故正确故选:D【点评】
15、本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题10【答案】C【解析】解:从 30 件产品中随机抽取 6 件进行检验,采用系统抽样的间隔为 306=5,只有选项 C 中编号间隔为 5,故选:C11【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则 故排除 A、D;对 C: 在(- 和( 上单调递增,但在定义域上不单调,故 C错;故答案为:B12【答案】D【解析】解:设函数 y=f(x)g(x)=x 2lnx,求导数得=当 时,y0,函数在 上为单调减函数,精选高中模拟试卷第 11 页,共 1
16、6 页当 时,y0,函数在 上为单调增函数所以当 时,所设函数的最小值为所求 t 的值为故选 D【点评】可以结合两个函数的草图,发现在(0,+)上 x2lnx 恒成立,问题转化为求两个函数差的最小值对应的自变量 x 的值二、填空题13【答案】 3【解析】试题分析:依题意可知所求直线的斜率为 ,故倾斜角为 .33考点:直线方程与倾斜角14【答案】 【解析】解:一次游戏中,甲、乙、丙出的方法种数都有 2 种,所以总共有 23=8 种方案,而甲胜出的情况有:“甲黑乙白丙白”,“ 甲白乙黑丙黑”,共 2 种,所以甲胜出的概率为故答案为 【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数
17、目15【答案】 【解析】解:AOB 是直角三角形(O 是坐标原点),圆心到直线 ax+ by=1 的距离 d= ,即 d= = ,精选高中模拟试卷第 12 页,共 16 页整理得 a2+2b2=2,则点 P(a,b)与点 Q(1, 0)之间距离 d= = ,点 P(a,b)与点(1,0)之间距离的最小值为 故答案为: 【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力16【答案】 2【解析】考点:1、正弦定理及勾股定理;2 诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角
18、恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可, 对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).精选高中模拟试卷第 13 页,共 16 页17【答案】 3 【解析】解:把 x=0 代入 2x+3y+6=0 可得 y=2,把 y=0 代入 2x+3y+6=0 可得 x=3,直线与坐标轴的交点为(0,2)和( 3,0),故三角形的面积 S= 23=3,故答案为:3【点评】本题考查直线的一般式方程和三角形的面积公
19、式,属基础题18【答案】12考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为 0 的点,再判断导数为 0 的点的左、右两侧的导数符号.(2)已知函数求极值.求 f( x)求方程 f(x)0 的根 列表检验 f(x )在 f(x)0 的根的附近两侧的符号下结论.(3)已知极值求参数.若函数 f(x )在点(x 0,y 0)处取得极值,则 f(x 0)0,且在该点左、右两侧的导数值符号相反.三、解答题19【答案】 【解析】解:(1)当 m1=0,即 m=1 时,复数 z 是实数;(2)当 m10,即 m1 时,复数 z 是虚数;(3)当 m+1=0
20、,且 m10 时,即 m=1 时,复数 z 是纯虚数【点评】本题考查复数的概念,属于基础题精选高中模拟试卷第 14 页,共 16 页20【答案】(1) ;(2) .3,170【解析】111试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有 种情况,10其中第组的名志愿者 12,B至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1 (2)记第 3 组的 3 名志愿者为 123,A,第 4 组的 2 名志愿者为 12,B,则从 5 名志愿者中抽取 2 名志愿者有 12(,)A,3, 1,B, (,), (,), 21(,), 2(,)A, 3(
21、,), 32(,)A, 12(,)B,共 10 种,其中第 4 组的 2 名志愿者 12至少有一名志愿者被抽中的有 1, 1, , ,A,31(,), 3(,), ,,共 7 种,所以第 4 组至少有一名志愿都被抽中的概率为 70.考点:1、分层抽样的应用;2、古典概型概率公式.21【答案】 【解析】解:(1)f(x) =sinx2 sin2=sinx2 =sinx+ cosx=2sin(x+ )f(x)的最小正周期 T= =2;(2)x0, ,x+ ,sin(x+ )0,1,即有: f(x)=2sin (x+ ) ,2 ,可解得 f(x)在区间0, 上的最小值为: 精选高中模拟试卷第 15
22、页,共 16 页【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查22【答案】解:()由正弦定理及已知条件有 , 即 . 3223cbabcacb22分由余弦定理得: ,又 ,故 . 6 分23cos2bcaA),0(A() 的面积为 , , , 8 分BCsin134bc又由() 及 得 , 10 分 223ab,a162由 解得 或 . 12 分,ccb23【答案】 【解析】解:(I)由cosA= ,0A,sinA= = ,5(a 2+b2c2)=3 ab,cosC= = ,0C,sinC= = ,cos2C=2cos 2C1=
23、 ,cosB= cos( A+C)= cosAcosC+sinAsinC= + =0B,B= (II) = ,a= = c,ac= 1,a= ,c=1,S= acsinB= 1 = 精选高中模拟试卷第 16 页,共 16 页【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识考查学生对基础知识的综合运用24【答案】 【解析】由底面 为菱形且 , , 是等边三角形,ABCD60oABCABDC取 中点 ,有 , O,P 为二面角 的平面角, P9oO分别以 所在直线为 轴,建立空间直角坐标系如图, , ,xyz则 (30)(,3),(01)(3,20)(,1) 3 分()由 为 中点, ,2M 3,2DB(,),PA2DCPACA 6 分()由 , , ,(0,0P 平面 的法向量可取 (3,), 9 分, 设直线 与平面 所成角为 ,(,13) D则 6sin|co,|4|2CAP即直线 与平面 所成角的正弦值为 12 分CDMyzxMDACPBO