分享
分享赚钱 收藏 举报 版权申诉 / 17

类型建德市高级中学2018-2019学年高二上学期第二次月考试卷数学.doc

  • 上传人:爱你没说的
  • 文档编号:8965852
  • 上传时间:2019-07-18
  • 格式:DOC
  • 页数:17
  • 大小:714.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    建德市高级中学2018-2019学年高二上学期第二次月考试卷数学.doc
    资源描述:

    1、精选高中模拟试卷第 1 页,共 17 页建德市高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知 f(x)=2sin( x+)的部分图象如图所示,则 f(x)的表达式为( )A BC D2 已知函数 f(x)=3 1+|x| ,则使得 f(x)f(2x1)成立的 x 的取值范围是( )A B C( , ) D3 如图 RtOAB是一平面图形的直观图,斜边 OB=2,则这个平面图形的面积是( )A B1 C D4 在三角形 中,若 ,则 的大小为( )A B C D5 若直线 上存在点 满足约束条件2yx(,)y则实数 的最大值为 30,xm精

    2、选高中模拟试卷第 2 页,共 17 页A、 B、 C、 D、13226 直角梯形 中, ,直线 截该梯形所得位于左边图O,1,2ABOC:lxt形面积为,则函数 的图像大致为( )Sft7 已知命题 p:xR,2 x3 x;命题 q: xR ,x 3=1x2,则下列命题中为真命题的是( )Apq Bpq Cpq Dpq8 一个几何体的三视图如图所示,如果该几何体的侧面面积为 12,则该几何体的体积是( )A4 B12 C16 D489 现准备将 7 台型号相同的健身设备全部分配给 5 个不同的社区,其中甲、乙两个社区每个社区至少 2 台,其它社区允许 1 台也没有,则不同的分配方案共有( )A

    3、27 种 B35 种 C29 种 D125 种10在等差数列a n中,3( a3+a5)+2 (a 7+a10+a13)=24,则此数列前 13 项的和是( )A13 B26 C52 D5611垂直于同一条直线的两条直线一定( )A平行 B相交 C异面 D以上都有可能12如图,四面体 DABC 的体积为 ,且满足 ACB=60,BC=1,AD+ =2,则四面体 DABC 中最长棱的长度为( )精选高中模拟试卷第 3 页,共 17 页A B2 C D3二、填空题13方程 有两个不等实根,则的取值范围是 24xk14已知向量 若 ,则 ( )(1,)(,1)abx(2)ab|2|abA B C2

    4、D35【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力15从等边三角形纸片 ABC 上,剪下如图所示的两个正方形,其中 BC=3+ ,则这两个正方形的面积之和的最小值为 16平面向量 , 满足|2 |=1,| 2 |=1,则 的取值范围 17已知正方体 ABCDA1B1C1D1的一个面 A1B1C1D1在半径为 的半球底面上,A 、B 、C、D 四个顶点都在此半球面上,则正方体 ABCDA1B1C1D1的体积为 18已知函数 f(x)= 有 3 个零点,则实数 a 的取值范围是 三、解答题19(文科)(本小题满分 12 分)我国是

    5、世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年 100 位居民每人的月均用水量(单位:吨),精选高中模拟试卷第 4 页,共 17 页将数据按照 分成 9 组,制成了如图所示的频率分布直方图0,.5,14,.5(1)求直方图中的值;(2)设该市有 30 万居民,估计全市居民中月均用量不低于 3 吨的人数,并说明理由;(3)若该市政府希望使 85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由20 坐标系与参数方

    6、程线 l:3x+4y12=0 与圆 C: ( 为参数 )试判断他们的公共点个数21在四棱锥 EABCD 中,底面 ABCD 是边长为 1 的正方形,AC 与 BD 交于点 O,EC底面 ABCD,F为 BE 的中点精选高中模拟试卷第 5 页,共 17 页()求证:DE平面 ACF;()求证:BDAE22函数 f(x)=Asin ( x+)(A0, 0,| )的一段图象如图所示 (1)求 f(x)的解析式;(2)求 f(x)的单调减区间,并指出 f(x)的最大值及取到最大值时 x 的集合;(3)把 f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数精选高中模拟试卷第 6 页

    7、,共 17 页23已知函数 f(x)=ax 2+bx+c,满足 f(1)= ,且 3a2c2b(1)求证:a0 时, 的取值范围;(2)证明函数 f(x)在区间( 0,2)内至少有一个零点;(3)设 x1,x 2是函数 f(x)的两个零点,求 |x1x 2|的取值范围24已知函数 f(x)=log a(x 2+2),若 f(5)=3;(1)求 a 的值; (2)求 的值; (3)解不等式 f(x)f(x+2)精选高中模拟试卷第 7 页,共 17 页建德市高级中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】 B【解析】解:函数的周期为 T= = ,=又

    8、函数的最大值是 2,相应的 x 值为 = ,其中 kZ取 k=1,得 =因此,f(x)的表达式为 ,故选 B【点评】本题以一个特殊函数求解析式为例,考查由 y=Asin(x+)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题2 【答案】A【解析】解:函数 f(x)=3 1+|x| 为偶函数,当 x0 时,f(x)=3 1+x此时 y=31+x为增函数,y= 为减函数,当 x0 时,f(x)为增函数,则当 x0 时, f(x)为减函数,f( x) f(2x 1),|x|2x 1|,x2(2x 1) 2,解得:x ,故选:A精选高中模拟试卷第 8 页,共 17 页【点评】

    9、本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档3 【答案】D【解析】解:RtOAB是一平面图形的直观图,斜边 OB=2,直角三角形的直角边长是 ,直角三角形的面积是 ,原平面图形的面积是 12 =2故选 D4 【答案】 A【解析】由正弦定理知 ,不妨设 , , ,则有 ,所以 ,故选 A答案:A5 【答案】B【解析】如图,当直线 经过函数 的图象mxxy2与直线 的交点时,03yx函数 的图像仅有一个点 在可行域内,2P由 ,得 , )2,1(6 【答案】C【解析】试题分析:由题意得,当 时, ,当 时,01t21ftt1t,所以 ,结合不同段上函数的性质,可知选项 C

    10、12()2ftt,0tt符合,故选 C.考点:分段函数的解析式与图象.7 【答案】B425 414154 32精选高中模拟试卷第 9 页,共 17 页【解析】解:因为 x=1 时,2 13 1,所以命题 p:xR ,2 x3 x为假命题,则p 为真命题令 f(x)=x 3+x21,因为 f(0)=10,f(1)=10所以函数 f(x)=x 3+x21 在(0,1)上存在零点,即命题 q:xR,x 3=1x2为真命题则pq 为真命题故选 B8 【答案】B【解析】解:由三视图可知几何体是底面半径为 2 的圆柱,几何体的侧面积为 22h=12,解得 h=3,几何体的体积 V=223=12故选 B【点

    11、评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题9 【答案】 B【解析】排列、组合及简单计数问题【专题】计算题【分析】根据题意,可将 7 台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,当三台设备都给一个社区,当三台设备分为 1 和 2 两份分给 2 个社区,当三台设备按 1、1、1 分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案【解答】解:根据题意,7 台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少 2 台,可以先分给甲、乙两个社区各 2 台设备,余下的三台

    12、设备任意分给五个社区,分三种情况讨论:当三台设备都给一个社区时,有 5 种结果,当三台设备分为 1 和 2 两份分给 2 个社区时,有 2C52=20 种结果,当三台设备按 1、1、1 分成三份时分给三个社区时,有 C53=10 种结果,不同的分配方案有 5+20+10=35 种结果;故选 B【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素10【答案】B精选高中模拟试卷第 10 页,共 17 页【解析】解:由等差数列的性质可得:a 3+a5=2a4,a 7+a13=2a10,代入已知可得 32a4+23a10=24,即 a4+a10=4,故数列的前

    13、13 项之和 S13= = =26故选 B【点评】本题考查等差数列的性质和求和公式,涉及整体代入的思想,属中档题11【答案】D【解析】解:分两种情况:在同一平面内,垂直于同一条直线的两条直线平行;在空间内垂直于同一条直线的两条直线可以平行、相交或异面故选 D【点评】本题主要考查在空间内两条直线的位置关系12【答案】 B【解析】解:因为 AD( BCACsin60) VDABC= ,BC=1,即 AD 1,因为 2=AD+ 2 =2,当且仅当 AD= =1 时,等号成立,这时 AC= , AD=1,且 AD面 ABC,所以 CD=2,AB= ,得 BD= ,故最长棱的长为 2故选 B【点评】本题

    14、考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题二、填空题13【答案】 53,124【解析】试题分析:作出函数 和 的图象,如图所示,函数 的图象是一个半2yx23ykx24yx精选高中模拟试卷第 11 页,共 17 页圆,直线 的图象恒过定点 ,结合图象,可知,当过点 时, ,当23ykx2,32,03024k直线 与圆相切时,即 ,解得 ,所以实数的取值范围是 .2(0)1k51k5,1111考点:直线与圆的位置关系的应用【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函

    15、数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.14【答案】A【解析】15【答案】 【解析】解:设大小正方形的边长分别为 x,y,(x,y0)则 +x+y+ =3+ ,化为:x+y=3 则 x2+y2 = ,当且仅当 x=y= 时取等号这两个正方形的面积之和的最小值为 故答案为: 16【答案】 ,1 精选高中模拟试卷第 12 页,共 17 页【解析】解:设两个向量的夹角为 ,因为|2 |=1,| 2 |=1,所以 , ,所以 , =所以 5 =1,所以 ,所以 5a21 , ,1

    16、,所以 ;故答案为: ,1【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围17【答案】 2 【解析】解:如图所示,连接 A1C1,B 1D1,相交于点 O则点 O 为球心,OA= 设正方体的边长为 x,则 A1O= x在 RtOAA1中,由勾股定理可得: +x2= ,解得 x= 正方体 ABCDA1B1C1D1的体积 V= =2 故答案为:2 精选高中模拟试卷第 13 页,共 17 页18【答案】 ( ,1) 【解析】解:函数 f(x)= 有 3 个零点,a0 且 y=ax2+2x+1 在(2,0)上有 2 个零点, ,解得 a1,故答案为:(

    17、 ,1)三、解答题19【答案】(1) ;(2) 万;(3) .0.a.629【解析】精选高中模拟试卷第 14 页,共 17 页(3)由图可得月均用水量不低于 2.5 吨的频率为:;0.58.1603.4520.7385%月均用水量低于 3 吨的频率为:;则 吨1725029.5x考点:频率分布直方图20【答案】 【解析】解:圆 C: 的标准方程为(x+1 ) 2+(y 2) 2=4由于圆心 C( 1,2)到直线 l:3x+4y12=0 的距离d= = 2故直线与圆相交故他们的公共点有两个【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标

    18、和半径长是解答本题的关键21【答案】精选高中模拟试卷第 15 页,共 17 页【解析】【分析】()连接 FO,则 OF 为BDE 的中位线,从而 DEOF,由此能证明 DE平面 ACF()推导出 BDAC,EC BD,从而 BD平面 ACE,由此能证明 BDAE【解答】证明:()连接 FO,底面 ABCD 是正方形,且 O 为对角线 AC 和 BD 交点,O 为 BD 的中点,又F 为 BE 中点,OF 为BDE 的中位线,即 DEOF,又 OF平面 ACF,DE 平面 ACF,DE平面 ACF()底面 ABCD 为正方形,BDAC,EC平面 ABCD,ECBD,BD平面 ACE,BDAE 2

    19、2【答案】 【解析】解:(1)由函数的图象可得 A=3, T= =4 ,解得 = 再根据五点法作图可得 +=0,求得 = ,f(x)=3sin( x )(2)令 2k x 2k+ ,kz,求得 5kx5k+ ,故函数的增区间为5k ,5k + ,kz函数的最大值为 3,此时, x =2k+ ,即 x=5k+ ,kz,即 f(x)的最大值为 3,及取到最大值时 x 的集合为x|x=5k + ,kz精选高中模拟试卷第 16 页,共 17 页(3)设把 f(x)=3sin( x )的图象向左至少平移 m 个单位,才能使得到的图象对应的函数为偶函数即y=3sin( x+ )则由 (x+m) = x+

    20、,求得 m= ,把函数 f(x)=3sin( x )的图象向左平移 个单位,可得 y=3sin( x+ )=3cos x 的图象【点评】本题主要考查由函数 y=Asin(x+)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin(x+)的图象变换规律,属于基础题23【答案】【解析】解:(1)f(1) =a+b+c= ,3a+2b+2c=0又 3a2c2b,故 3a0,2b0,从而 a0,b0,又 2c=3a2b 及 3a2c2b 知 3a3a2b2ba0,33 2 ,即3 (2)根据题意有 f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+ac=ac下面对 c 的正负情况进

    21、行讨论:当 c0 时,a 0,f(0)=c 0 ,f (1)= 0所以函数 f(x)在区间(0, 1)内至少有一个零点;当 c0 时,a 0,f(1)= 0,f(2)=ac0所以函数 f(x)在区间(1, 2)内至少有一个零点;综合得函数 f(x)在区间( 0,2)内至少有一个零点;(3)x 1,x 2是函数 f(x )的两个零点精选高中模拟试卷第 17 页,共 17 页x 1,x 2是方程 ax2+bx+c=0 的两根故 x1+x2= ,x 1x2= = =从而|x 1 x2|= = = 3 , |x1x 2| 【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与 x 轴交点的横坐标,解题时要注意根据题意合理的选择转化属于中档题24【答案】 【解析】解:(1)f(5) =3, ,即 loga27=3解锝:a=3(2)由(1)得函数 ,则 = (3)不等式 f(x)f(x+2),即为化简不等式得 函数 y=log3x 在(0,+ )上为增函数,且 的定义域为 Rx 2+2x 2+4x+6即 4x4,解得 x1,所以不等式的解集为:(1, +)

    展开阅读全文
    提示  道客多多所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:建德市高级中学2018-2019学年高二上学期第二次月考试卷数学.doc
    链接地址:https://www.docduoduo.com/p-8965852.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    道客多多用户QQ群:832276834  微博官方号:道客多多官方   知乎号:道客多多

    Copyright© 2025 道客多多 docduoduo.com 网站版权所有世界地图

    经营许可证编号:粤ICP备2021046453号    营业执照商标

    1.png 2.png 3.png 4.png 5.png 6.png 7.png 8.png 9.png 10.png



    收起
    展开