1、精选高中模拟试卷第 1 页,共 21 页卫滨区高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 函数 f(x)是以 2 为周期的偶函数,且当 x(0,1)时,f (x)=x+1 ,则函数 f(x)在(1,2)上的解析式为( )Af(x)=3 x Bf(x)=x3 Cf(x)=1x Df (x)=x+12 已知双曲线 (a0,b0)的右焦点 F,直线 x= 与其渐近线交于 A,B 两点,且 ABF 为钝角三角形,则双曲线离心率的取值范围是( )A B C D3 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A B C D4 如
2、图,在正六边形 ABCDEF 中,点 O 为其中心,则下列判断错误的是( )A = B C D5 如图,已知平面 = , 是直线 上的两点, 是平面 内的两点,且, , , 是平面 上的一动点,且有 ,则四棱锥 体积的最大值是( )A B C D6 在区域 内任意取一点 P(x,y),则 x2+y21 的概率是( )精选高中模拟试卷第 2 页,共 21 页A0 B C D7 天气预报说,在今后的三天中,每一天下雨的概率均为 40%现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生 0 到 9 之间取整数值的随机数,用 1,2,3,4 表示下雨,用5,6,7,8,9,0 表
3、示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况经随机模拟试验产生了如下 20 组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为( )A0.35 B0.25 C0.20 D0.158 利用斜二测画法得到的:三角形的直观图是三角形;平行四边形的直观图是平行四边形;正方形的直观图是正方形;菱形的直观图是菱形以上结论正确的是( )A B C D9 下面的结构图,总经理的直接下属是( )A总工程师和专家办公室B开发部C总工程师、专家办公
4、室和开发部D总工程师、专家办公室和所有七个部10如图,网格纸上的正方形的边长为 1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A30 B50 C75 D150精选高中模拟试卷第 3 页,共 21 页11已知函数 ,关于 的方程 ( )有 3 个相异的实数根,则 的()xef=2()()10fxaf-+-=aR a取值范围是( )A B C D21(,)e-+21(,)e-2(0,)1e-21e-【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力12双曲线 =1(m Z)的离心率为( )A B2 C D3二、填空题13满足关系式2
5、,3A 1,2,3,4的集合 A 的个数是 14已知向量 、 满足 ,则| + |= 15某种产品的加工需要 A,B,C,D,E 五道工艺,其中 A 必须在 D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与 C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种(用数字作答)16设 O 为坐标原点,抛物线 C:y 2=2px(p0)的准线为 l,焦点为 F,过 F 斜率为 的直线与抛物线 C相交于 A,B 两点,直线 AO 与 l 相交于 D,若|AF| |BF| ,则 = 17函数 yfx图象上不同两点 12,AxyB处的切线的斜率分别是 A
6、Bk, ,规定,ABk( 为线段 AB 的长度)叫做曲线 yfx在点 A 与点 B 之间的“弯曲度”,给出以下命题:函数 321yx图象上两点 A 与 B 的横坐标分别为 1 和 2,则 ,3;存在这样的函数,图象上任意两点之间的“弯曲度”为常数;设点 A,B 是抛物线 2yx上不同的两点,则 ,A;设曲线 xe(e 是自然对数的底数)上不同两点 1212,xyBx且 ,若 ,1tAB恒成立,则实数 t 的取值范围是 ,1.其中真命题的序号为_.(将所有真命题的序号都填上)精选高中模拟试卷第 4 页,共 21 页18向区域 内随机投点,则该点与坐标原点连线的斜率大于 1 的概率为 三、解答题1
7、9数列a n满足 a1= ,a n( , ),且 tanan+1cosan=1(nN *)()证明数列tan 2an是等差数列,并求数列tan 2an的前 n 项和;()求正整数 m,使得 11sina1sina2sinam=120某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行试销,得到如下数据:单价 x(单位:元) 8 8.2 8.4 8.6 8.8 9销量 y(单位:万件) 90 84 83 80 75 68(1)现有三条 y 对 x 的回归直线方程: =10x+170; =20x+250; =15x+210 ;根据所学的统计学知识,选择一条合
8、理的回归直线,并说明理由(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件 5 元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入成本)精选高中模拟试卷第 5 页,共 21 页21已知 z 是复数,若 z+2i 为实数(i 为虚数单位),且 z4 为纯虚数(1)求复数 z;(2)若复数(z+mi) 2在复平面上对应的点在第四象限,求实数 m 的取值范围22(本小题满分 12 分)如图,在四棱锥 中,底面 是菱形,且 点 是棱 的中点,平面PABCD 120ABCEPCABE与棱 交于点 F(1)求证: ;/E(2)若 ,且平面 平面 ,求平
9、面 与平面 所成的锐二面角的余2PADFA弦值 FBDCPEA【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.精选高中模拟试卷第 6 页,共 21 页23(本小题满分 12 分)在多面体 中,四边形 与 均为正方形, 平面ABCDEFGABCDEFCF, 平面 ,且 ABCDG24H(1)求证:平面 平面 ;AH(2)求二面角 的大小的余弦值FE24如图,在多面体 ABCDEF 中,底面 ABCD 是边长为 2 的菱形,BAD=60 ,四边形 BDEF 是矩形,平面BDEF平面 A
10、BCD,BF=3,H 是 CF 的中点(1)求证:AC平面 BDEF;(2)求二面角 HBDC 的大小精选高中模拟试卷第 7 页,共 21 页精选高中模拟试卷第 8 页,共 21 页卫滨区高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:x(0,1)时,f(x)=x+1,f (x)是以 2 为周期的偶函数,x (1,2),(x2)( 1,0),f(x)=f(x 2)=f(2 x)=2x+1=3 x,故选 A2 【答案】D【解析】解:函数 f(x)=(x 3)e x,f(x)=e x+(x3)e x=(x2)e x,令 f(x)0,即(x2
11、 )e x0,x2 0,解得 x2,函数 f(x)的单调递增区间是( 2,+ )故选:D【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目3 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故 D 不正确;中间的棱在侧视图中表现为一条对角线,故 C 不正确;而对角线的方向应该从左上到右下,故 B 不正确故 A 选项正确故选:A【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键4 【答案】D【解析】解:由图可知, ,但 不共线,故 ,故选 D精选高中模拟试卷第 9 页,共 2
12、1 页【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题5 【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知: 是直角三角形,又 ,所以 。因为 ,所以 PB=2PA。作 于 M,则 。令 AM=t,则所以 即为四棱锥的高,又底面为直角梯形,所以故答案为:A6 【答案】C【解析】解:根据题意,如图,设 O(0,0)、A (1,0 )、B (1,1)、C(0,1),分析可得区域 表示的区域为以正方形 OABC 的内部及边界,其面积为 1;x2+y21 表示圆心在原点,半径为 1 的圆,在正方形 OABC 的内部的面积为 = ,由几何概型的计算公式,可得点 P(x,
13、y)满足 x2+y21 的概率是 = ;故选 C【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算精选高中模拟试卷第 10 页,共 21 页7 【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下 20 组随机数,在 20 组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共 5 组随机数,所求概率为 故选 B8 【答案】A【解析】考点:斜二测画法9 【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部读结构图的顺序是按照从上到下,从左到右的顺序故选
14、C【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读10【答案】B【解析】解:该几何体是四棱锥,其底面面积 S=56=30,高 h=5,则其体积 V= Sh= 305=50故选 B11【答案】D精选高中模拟试卷第 11 页,共 21 页xyOe1第卷(共 90 分)12【答案】B【解析】解:由题意,m 240 且 m0,mZ,m=1双曲线的方程是 y2 x2=1a 2=1,b 2=3,c 2=a2+b2=4a=1,c=2,离心率为 e= =2故选:B精选高中模拟试卷第 12 页,共 21 页【点评】本题的考点
15、是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b2二、填空题13【答案】 4 【解析】解:由题意知,满足关系式2,3A 1,2 ,3,4的集合 A 有:2,3 ,2 ,3 ,1,2 ,3,4 ,2,3,1,4 ,故共有 4 个,故答案为:414【答案】 5 【解析】解: =(1,0)+(2,4)= (3,4) = =5故答案为:5【点评】本题考查了向量的运算法则和模的计算公式,属于基础题15【答案】 24 【解析】解:由题意,B 与 C 必须相邻,利用捆绑法,可得 =48 种方法,因为 A 必须在 D 的前面完成,所以完成加工该产品的不同工艺的排列顺序有
16、 482=24 种,故答案为:24【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础16【答案】 【解析】解:O 为坐标原点,抛物线 C:y 2=2px(p0)的准线为 l,焦点为 F,过 F 斜率为 的直线与抛物线 C 相交于 A,B 两点,直线 AO 与 l 相交于 D,直线 AB 的方程为 y= (x ),l 的方程为 x= ,精选高中模拟试卷第 13 页,共 21 页联立 ,解得 A( , P),B( , )直线 OA 的方程为:y= ,联立 ,解得 D( , )|BD|= = ,|OF|= , = = 故答案为: 【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认
17、真审题,要熟练掌握抛物线的简单性质17【答案】【解析】试题分析:错: (1,)2,5|17,|,ABABk7(,)31;对:如 y;对; 222,()()()ABxx ;错;12 112 2|(,)()x xxee,精选高中模拟试卷第 14 页,共 21 页1212()1 1,(,)|()xxeABe因为 1(,)tAB恒成立,故 1t.故答案为.111考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题
18、.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.18【答案】 【解析】解:不等式组 的可行域为:由题意,A(1,1),区域 的面积为=( x3) = ,由 ,可得可行域的面积为:1 = ,坐标原点与点(1,1)的连线的斜率大于 1,坐标原点与与坐标原点连线的斜率大于 1 的概率为: =故答案为: 精选高中模拟试卷第 15 页,共 21 页【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积三
19、、解答题19【答案】 【解析】()证明:对任意正整数 n,a n( , ),且 tanan+1cosan=1(nN *)故 tan2an+1= =1+tan2an,数列tan 2an是等差数列,首项 tan2a1= ,以 1 为公差 = 数列tan 2an的前 n 项和= + = ()解:cosa n0,tana n+10, tana n= , ,sina 1sina2sinam=(tana 1cosa1)(tana 2cosa2)(tana mcosam)=(tana 2cosa1) (tana 3cosa2) (tana mcosam1)(tana 1cosam)=(tana 1cosam
20、)= = ,由 ,得 m=40精选高中模拟试卷第 16 页,共 21 页【点评】本题考查了等差数列的通项公式及其前 n 项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题20【答案】 【解析】(1) = (8+8.2+8.4+8.6+8.8+9)=8.5, = (90+84+83+80+75+68)=80;( , )在回归直线上,选择 =20x+250;(2)利润 w=(x5)(20x+250)= 20x 2+350x1250= 20(x8.75) 2+281.25,当 x=8.75 元时,利润 W 最大为 281.25(万元),当单价定 8.75 元时,利润最大 281.2
21、5(万元)21【答案】 【解析】解:(1)设 z=x+yi(x,y R)由 z+2i=x+(y+2)i 为实数,得 y+2=0,即 y=2由 z4=(x4) +yi 为纯虚数,得 x=4z=42i (2)(z+mi) 2=( m2+4m+12)+8(m2)i ,根据条件,可知 解得2 m2,实数 m 的取值范围是(2,2)【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题22【答案】【解析】精选高中模拟试卷第 17 页,共 21 页 平面 , 是平面 的一个法向量,BGPAD)0,3(BPAF精选高中模拟试卷第 18 页,共 21 页23【答案】【解析】【命题意图】本题主要考
22、查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想精选高中模拟试卷第 19 页,共 21 页 平面 ,平面 平面 5 分GHAGHEF24【答案】 【解析】(1)证明:四边形 ABCD 是菱形,精选高中模拟试卷第 20 页,共 21 页ACBD 又平面 BDEF平面 ABCD,平面 BDEF平面 ABCD=BD,且 AC平面 ABCD,AC平面 BDEF;(2)解:设 ACBD=O,取 EF 的中点 N,连接 ON,四边形 BDEF 是矩形,O,N 分别为 BD,EF 的中点,ONED ,ED平面 ABCD,ON平面 ABCD
23、,由 ACBD ,得 OB,OC,ON 两两垂直以 O 为原点,OB,OC,ON 所在直线分别为 x 轴,y 轴,z 轴,如图建立空间直角坐标系底面 ABCD 是边长为 2 的菱形,BAD=60,BF=3,B(1,0,0),D( 1,0,0),H( , , ) =( , , ), =(2,0,0)设平面 BDH 的法向量为 =(x,y,z),则令 z=1,得 =(0, ,1)由 ED平面 ABCD,得平面 BCD 的法向量为 =(0,0,3),则 cos , = ,由图可知二面角 HBDC 为锐角,二面角 HBDC 的大小为 60精选高中模拟试卷第 21 页,共 21 页【点评】本题考查面面垂直的性质,考查线面垂直,考查面面角,考查向量法的运用,正确求出平面的法向量是关键