收藏 分享(赏)

沙湾县高中2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:8965336 上传时间:2019-07-18 格式:DOC 页数:14 大小:545KB
下载 相关 举报
沙湾县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共14页
沙湾县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共14页
沙湾县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共14页
沙湾县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共14页
沙湾县高中2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 14 页沙湾县高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知| |=3,| |=1, 与 的夹角为 ,那么| 4 |等于( )A2 B C D132 设有直线 m、n 和平面 、,下列四个命题中,正确的是( )A若 m,n ,则 mn B若 m,n ,m ,n,则 C若 ,m,则 mD若 ,m ,m ,则 m3 已知 x,y 满足约束条件 ,使 z=ax+y 取得最小值的最优解有无数个,则 a 的值为( )A3 B3 C 1 D14 下列函数中哪个与函数 y=x 相等( )Ay= ( ) 2 By= Cy= D

2、y=5 抛物线 y2=2x 的焦点到直线 x y=0 的距离是( )A B C D6 在定义域内既是奇函数又是减函数的是( )Ay= By= x+Cy= x|x| Dy=7 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )A B C D精选高中模拟试卷第 2 页,共 14 页8 下列命题中的说法正确的是( )A命题“若 x2=1,则 x=1”的否命题为“若 x2=1,则 x1”B“x=1” 是“x 2+5x6=0”的必要不充分条件C命题“ xR,使得 x2+x+10”的否定是:“xR ,均有 x2+x+10”D命题“在

3、ABC 中,若 AB,则 sinAsinB ”的逆否命题为真命题9 如图,直三棱柱 ABCA1B1C1 中,侧棱 AA1平面 ABC若 AB=AC=AA1=1,BC= ,则异面直线 A1C与 B1C1 所成的角为( )A30 B45 C60 D90105 名运动员争夺 3 项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A3 5 B C D5 311 , 分别为双曲线 ( , )的左、右焦点,点 在双曲线上,满足 ,1F221xyaba0P120PF若 的内切圆半径与外接圆半径之比为 ,则该双曲线的离心率为( )12P32A. B. C. D. 3131【命题意图】本题考查双曲线的

4、几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力12复数 ( 为虚数单位),则 的共轭复数为( )2()izzA B C D43-+43i+4i+34i-【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力二、填空题13给出下列命题:(1)命题 p:;菱形的对角线互相垂直平分,命题 q:菱形的对角线相等;则 pq 是假命题(2)命题“若 x24x+3=0,则 x=3”的逆否命题为真命题(3)“ 1x3” 是“x 24x+30” 的必要不充分条件精选高中模拟试卷第 3 页,共 14 页(4)若命题 p:xR,x 2+4x+50,则p

5、: 其中叙述正确的是 (填上所有正确命题的序号)14函数 yf图象上不同两点 12,AxyB处的切线的斜率分别是 ABk, ,规定,ABk( 为线段 AB 的长度)叫做曲线 yfx在点 A 与点 B 之间的“弯曲度”,给出以下命题:函数 321yx图象上两点 A 与 B 的横坐标分别为 1 和 2,则 ,3;存在这样的函数,图象上任意两点之间的“弯曲度”为常数;设点 A,B 是抛物线 2yx上不同的两点,则 ,A;设曲线 xe(e 是自然对数的底数)上不同两点 1212,xyBx且 ,若 ,1tAB恒成立,则实数 t 的取值范围是 ,1.其中真命题的序号为_.(将所有真命题的序号都填上)15若

6、函数 f(x)= m 在 x=1 处取得极值,则实数 m 的值是 16 已知数列 的前 项和是 , 则数列的通项 _17已知 i 是虚数单位,且满足 i2=1,aR,复数 z=(a 2i)(1+i)在复平面内对应的点为 M,则“a=1” 是“点 M 在第四象限 ”的 条件(选填“ 充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)18命题“ x R,2x 23ax+90”为假命题,则实数 a 的取值范围为 三、解答题19某实验室一天的温度(单位: )随时间 (单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于 ,则在哪段时间实验室需要降

7、温?精选高中模拟试卷第 4 页,共 14 页20为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有 a 人在排队等候购票开始售票后,排队的人数平均每分钟增加 b 人假设每个窗口的售票速度为 c 人/min ,且当开放 2 个窗口时,25min 后恰好不会出现排队现象(即排队的人刚好购完);若同时开放 3 个窗口,则 15min 后恰好不会出现排队现象若要求售票 10min 后不会出现排队现象,则至少需要同时开几个窗口?21在四棱锥 EABCD 中,底面 ABCD 是边长为 1 的正方形,AC 与 BD 交于点 O,EC底面 ABCD,F为 BE 的中点()求证:DE平

8、面 ACF;()求证:BDAE22(本小题满分 10 分)选修 4-4:坐标系与参数方程已知曲线 的极坐标方程是 ,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立C2cos精选高中模拟试卷第 5 页,共 14 页平面直角坐标系,直线的参数方程是 (为参数).243xty(1)写出曲线 的参数方程,直线的普通方程;C(2)求曲线 上任意一点到直线的距离的最大值.23已知 p:“直线 x+ym=0 与圆(x 1) 2+y2=1 相交”;q:“方程 x2x+m4=0 的两根异号”若 pq 为真,p为真,求实数 m 的取值范围24已知2x2, 2y2,点 P 的坐标为(x,y)(1)求当 x,y

9、Z 时,点 P 满足(x 2) 2+(y 2) 24 的概率;(2)求当 x,yR 时,点 P 满足(x2) 2+(y2) 24 的概率精选高中模拟试卷第 6 页,共 14 页沙湾县高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:| |=3,| |=1, 与 的夹角为 ,可得 =| | |cos , =3 1 = ,即有| 4 |= = 故选:C【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题2 【答案】D【解析】解:A 不对,由面面平行的判定定理知, m 与 n 可能相交,也可能是异面直线

10、;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线;故选:D3 【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由 z=ax+y,得 y=ax+z,若 a=0,此时 y=z,此时函数 y=z 只在 B 处取得最小值,不满足条件若 a0,则目标函数的斜率 k=a0平移直线 y=ax+z,由图象可知当直线 y=ax+z 和直线 x+y=1 平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即 a=1若 a0,则目标函数的斜率 k=a0平移直线 y=ax+z,由图象可知当直线 y=ax+z,此时目标函数只在 C 处取得最小值

11、,不满足条件综上 a=1故选:D精选高中模拟试卷第 7 页,共 14 页【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用 z 的几何意义是解决本题的关键注意要对 a 进行分类讨论4 【答案】B【解析】解:A函数的定义域为 x|x0,两个函数的定义域不同B函数的定义域为 R,两个函数的定义域和对应关系相同,是同一函数C函数的定义域为 R,y=|x| ,对应关系不一致D函数的定义域为x|x 0,两个函数的定义域不同故选 B【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数5 【答案】C【解析】解:抛物线 y

12、2=2x 的焦点 F( ,0),由点到直线的距离公式可知:F 到直线 x y=0 的距离 d= = ,故答案选:C6 【答案】C【解析】解:A. 在定义域内没有单调性, 该选项错误;精选高中模拟试卷第 8 页,共 14 页B. 时,y= ,x=1 时,y=0;该函数在定义域内不是减函数,该选项错误;Cy= x|x|的定义域为 R,且 (x)| x|=x|x|=( x|x|);该函数为奇函数;该函数在0,+),(,0)上都是减函数,且0 2=02;该函数在定义域 R 上为减函数, 该选项正确;D. ;0+1 01;该函数在定义域 R 上不是减函数, 该选项错误故选:C【点评】考查反比例函数的单调

13、性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性7 【答案】A【解析】解:由题意可知截取三棱台后的几何体是 7 面体,左视图中前、后平面是线段,上、下平面也是线段,轮廓是正方形,AP 是虚线,左视图为:故选 A【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视8 【答案】D【解析】解:A命题“若 x2=1,则 x=1”的否命题为“若 x21,则 x1”,故 A 错误,B由 x2+5x6=0 得 x=1 或 x=6,即“x=1”是“x 2+5x6=0”既不充分也不必要条件,故 B 错误,C命题“ xR,使得 x2+x+10”的否定是:“xR

14、,均有 x2+x+105,故 C 错误,精选高中模拟试卷第 9 页,共 14 页D若 AB,则 ab,由正弦定理得 sinAsinB,即命题“在ABC 中,若 AB,则 sinAsinB”的为真命题则命题的逆否命题也成立,故 D 正确故选:D【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础9 【答案】C【解析】解:因为几何体是棱柱,BCB 1C1,则直线 A1C 与 BC 所成的角为就是异面直线 A1C 与 B1C1 所成的角直三棱柱 ABCA1B1C1 中,侧棱 AA1平面 ABC若AB=AC=AA1=1,BC= ,BA 1=

15、 ,CA 1= ,三角形 BCA1 是正三角形,异面直线所成角为 60故选:C10【答案】D【解析】解:每一项冠军的情况都有 5 种,故 5 名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D【点评】本题主要考查分步计数原理的应用,属于基础题11【答案】D 【解析】 , ,即 为直角三角形, ,120PF12PF12PF22114PFc,则 ,12|a 2()4()ca.所以 内切圆半径2112()()484ca1,外接圆半径 .由题意,得 ,整理,得12rca R232c,双曲线的离心率 ,故选 D.2()43ca3e12【答案】A精选高中模拟试卷第 10 页,共 14 页【解析】根

16、据复数的运算可知 ,可知 的共轭复数为 ,故选 A.43)2()(iiiz z43zi=-+二、填空题13【答案】 (4) 【解析】解:(1)命题 p:菱形的对角线互相垂直平分,为真命题命题 q:菱形的对角线相等为假命题;则 pq 是真命题,故(1)错误,(2)命题“若 x24x+3=0,则 x=3 或 x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由 x24x+30 得 1x3,则“1x3”是“x 24x+3 0”的充要条件,故(3)错误,(4)若命题 p:xR,x 2+4x+50,则p: 正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真

17、假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题14【答案】【解析】试题分析:错: (1,)2,5|17,|,ABABk7(,)31;对:如 y;对; 222,()()()ABxx ;错;12 112 2|(,)()x xxee,12121 ,(,)|()xxABee因为 (,)t恒成立,故 1t.故答案为.111考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该

18、题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.15【答案】2【解析】解:函数 f(x)= m 的导数为 f(x)=mx 2+2x,精选高中模拟试卷第 11 页,共 14 页由函数 f(x)= m 在 x=1 处取得极值,即有 f(1)=0,即 m+2=0,解得 m=2,即有 f(x)=2x 2+2x=2(x 1)x,可得 x=1 处附近导数左正右负,为极大值点故答案为:2【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方

19、法,属于基础题16【答案】【解析】当 时,当 时, ,两式相减得:令 得 ,所以答案:17【答案】 充分不必要 【解析】解:复数 z=(a 2i)(1+i)=a+2+ (a2)i ,在复平面内对应的点 M 的坐标是(a+2,a 2),若点在第四象限则 a+20,a 20,2 a2,“a=1”是“点 M 在第四象限”的充分不必要条件,故答案为:充分不必要【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题18【答案】2 a2【解析】解:原命题的否定为“xR,2x 23ax+90 ”,且为真命题,则开口向上的二次函数值要想大于等于 0 恒成立,精

20、选高中模拟试卷第 12 页,共 14 页只需=9a 24290,解得:2 a2 故答案为:2 a2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定注意“恒成立”条件的使用三、解答题19【答案】【解析】(1)f(t)=10 =102sin( t+ ),t0 ,24), t+ ,故当 t+ = 时,函数取得最大值为 10+2=12,当 t+ = 时,函数取得最小值为 102=8,故实验室这一天的最大温差为 128=4。(2)由题意可得,当 f(t)11 时,需要降温,由()可得 f(t)=102sin( t+

21、 ),由 102sin( t+ )11,求得 sin( t+ ) ,即 t+ ,解得 10t 18,即在 10 时到 18 时,需要降温。20【答案】 【解析】解:设至少需要同时开 x 个窗口,则根据题意有, 由得,c=2b,a=75b,代入得,75b+10b20bx,x ,即至少同时开 5 个窗口才能满足要求21【答案】【解析】【分析】()连接 FO,则 OF 为BDE 的中位线,从而 DEOF,由此能证明 DE平面 ACF()推导出 BDAC,EC BD,从而 BD平面 ACE,由此能证明 BDAE【解答】证明:()连接 FO,底面 ABCD 是正方形,且 O 为对角线 AC 和 BD 交

22、点,O 为 BD 的中点,又F 为 BE 中点,OF 为BDE 的中位线,即 DEOF,又 OF平面 ACF,DE 平面 ACF,DE平面 ACF精选高中模拟试卷第 13 页,共 14 页()底面 ABCD 为正方形,BDAC,EC平面 ABCD,ECBD,BD平面 ACE,BDAE 22【答案】(1)参数方程为 , ;(2) .1cosinxy3460xy145【解析】试题分析:(1)先将曲线 的极坐标方程转化为直角坐标系下的方程,可得 ,利用圆的参数方C2()1xy程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线 上任一点坐标,C用点到直线的距离公式,将其

23、转化为关于的式子,利用三角函数性质可得距离最值.试题解析:(1)曲线 的普通方程为 , ,2cos20xy ,所以参数方程为 ,2()1xy1iny直线的普通方程为 .3460xy(2)曲线 上任意一点 到直线的距离为C(cos,i),所以曲线 上任意一点到直线的距离的最大值为 .cosin5(91455dC145考点:1.极坐标方程;2.参数方程.23【答案】 【解析】解:若命题 p 是真命题:“直线 x+ym=0 与圆( x1) 2+y2=1 相交” ,则 1,解得 1;若命题 q 是真命题:“方程 x2x+m4=0 的两根异号” ,则 m40,解得 m4若 pq 为真,p 为真,精选高中

24、模拟试卷第 14 页,共 14 页则 p 为假命题,q 为真命题 实数 m 的取值范围是 或 【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题24【答案】 【解析】解:如图,点 P 所在的区域为长方形 ABCD 的内部(含边界),满足(x2) 2+(y2) 24 的点的区域为以( 2,2)为圆心, 2 为半径的圆面(含边界)(1)当 x,yZ 时,满足2x2, 2y2 的点有 25 个,满足 x,yZ,且(x2) 2+( y2) 24 的点有 6 个,依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);所求的概率 P= (2)当 x,yR 时,满足2x2, 2y2 的面积为:44=16,满足(x2) 2+(y2) 24,且 2x2,2y2 的面积为: =,所求的概率 P= = 【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报