1、精选高中模拟试卷第 1 页,共 18 页秦皇岛市高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 若 ,则下列不等式一定成立的是( )A BC D2 已知球的半径和圆柱体的底面半径都为 1 且体积相同,则圆柱的高为( )A1 B C2 D43 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于( )A12+ B12+23 C12+24 D12+ 4 如图所示,程序执行后的输出结果为( )精选高中模拟试卷第 2 页,共 18 页A1 B0 C1 D25 某大学数学系共有本科生 10
2、00 人,其中一、二、三、四年级的人数比为 4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为 200 的样本,则应抽取三年级的学生人数为( )A80 B40 C60 D206 若命题“pq” 为假,且“q”为假,则( )A“ pq”为假 Bp 假Cp 真 D不能判断 q 的真假7 函数 f(x)=Asin ( x+)(A 0, 0)的部分图象如图所示,则 f( )的值为( )A B0 C D8 函数 在区间 上的最大值为 5,最小值为 1,则 的取值范围是( )2()45fx0,mmA B C D,24(,20,29 设数列a n的前 n 项和为 Sn,若 Sn=n2+2n(nN
3、 *),则 + + =( )A B C D10设 Sn 是等比数列a n的前 n 项和,S 4=5S2,则 的值为( )A2 或 1 B1 或 2 C 2 或1 D1 或 211函数 y=f(x)是函数 y=f(x)的导函数,且函数 y=f(x)在点 p(x 0,f (x 0)处的切线为l:y=g(x)=f (x 0)(x x0)+f(x 0),F (x)=f(x) g(x),如果函数 y=f(x)在区间a ,b上的图象如图所示,且 ax 0b,那么( )精选高中模拟试卷第 3 页,共 18 页AF( x0)=0,x=x 0 是 F( x)的极大值点BF(x 0)=0,x=x 0 是 F(x)
4、的极小值点CF(x 0)0,x=x 0 不是 F(x)极值点DF( x0)0,x=x 0 是 F(x)极值点12已知函数 f(x)=m(x ) 2lnx(m R),g(x)= ,若至少存在一个 x01,e,使得 f(x 0)g(x 0)成立,则实数 m 的范围是( )A(, B( , ) C( ,0 D(,0)二、填空题13若双曲线的方程为 4x29y2=36,则其实轴长为 14【2017-2018 学年度第一学期如皋市高三年级第一次联考】已知函数若 有三个零点,则实数 m 的取值范围是_21 58lnxfxm, , , , gxfm15若执行如图 3 所示的框图,输入 ,则输出的数等于 。精
5、选高中模拟试卷第 4 页,共 18 页16如图,在三棱锥 中, , , , 为等边三角形,则PABCPCAPBCPBPC与平面 所成角的正弦值为_.AB【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力17在直角坐标系 xOy 中,已知点 A(0,1)和点 B(3,4),若点 C 在AOB 的平分线上且| |=2,则= 18二项式 展开式中,仅有第五项的二项式系数最大,则其常数项为 三、解答题19某游乐场有 A、B 两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏 A,丙丁两人各自独立进行游戏 B已知甲、乙两人各自闯关成功的概率均为
6、,丙、丁两人各自闯关成功的概率均为 精选高中模拟试卷第 5 页,共 18 页(1)求游戏 A 被闯关成功的人数多于游戏 B 被闯关成功的人数的概率;(2)记游戏 A、B 被闯关总人数为 ,求 的分布列和期望20十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”为此,红星路小区的环保人士对该小区年龄在15,75)的市民进行问卷调查,随机抽查了 50 人,并将调查情况进行整理后制成下表:年龄(岁) 15,25)25,35)35,45)45,55)55,65)65,75)频数 6 10 12 12 5 5赞成人数
7、 3 6 10 6 4 3(1)请估计红星路小区年龄在15,75)的市民对“禁放烟花、炮竹”的赞成率和被调查者的年龄平均值;(2)若从年龄在55,65)、 65,75)的被调查者中各随机选取两人进行追踪调查,记被选 4 人中不赞成“禁放烟花、炮竹”的人数为 ,求随机变量 的分布列和数学期望21已知复数 z= (1)求 z 的共轭复数 ;(2)若 az+b=1i,求实数 a,b 的值精选高中模拟试卷第 6 页,共 18 页22如图,点 A 是单位圆与 x 轴正半轴的交点,B( , )(I)若AOB=,求 cos+sin 的值;(II)设点 P 为单位圆上的一个动点,点 Q 满足 = + 若 AO
8、P=2, 表示| |,并求| |的最大值23已知函数 f(x)=lnx a( 1 ),a R()求 f(x)的单调区间;()若 f(x)的最小值为 0(i)求实数 a 的值;(ii)已知数列a n满足:a 1=1,a n+1=f(a n)+2 ,记x表示不大于 x 的最大整数,求证:n1 时a n=2精选高中模拟试卷第 7 页,共 18 页24在ABC 中,内角 A,B,C 所对的边分别是 a,b,c ,已知 tanA= ,c= ()求 ;()若三角形ABC 的面积为 ,求角 C精选高中模拟试卷第 8 页,共 18 页秦皇岛市高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案
9、)一、选择题1 【答案】D【解析】因为 , 有可能为负值,所以排除 A,C ,因为函数 为减函数且 ,所以 ,排除B,故选 D答案:D2 【答案】B【解析】解:设圆柱的高为 h,则V 圆柱 =12h=h,V 球 = = ,h= 故选:B3 【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S= (2+8)42 4+ (4 212)+ (4 )+ 8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目4 【答案】B【解析】解:执行程序框图,可得n=5,s=0满足条件 s15,s=5,n=
10、4满足条件 s15,s=9,n=3满足条件 s15,s=12 ,n=2精选高中模拟试卷第 9 页,共 18 页满足条件 s15,s=14 ,n=1满足条件 s15,s=15 ,n=0不满足条件 s15,退出循环,输出 n 的值为 0故选:B【点评】本题主要考查了程序框图和算法,正确判断退出循环时 n 的值是解题的关键,属于基础题5 【答案】B【解析】解:要用分层抽样的方法从该系所有本科生中抽取一个容量为 200 的样本,三年级要抽取的学生是 200=40,故选:B【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果
11、6 【答案】B【解析】解:命题“pq” 为假,且“q”为假,q 为真,p 为假;则 pq 为真,故选 B【点评】本题考查了复合命题的真假性的判断,属于基础题7 【答案】C【解析】解:由图象可得 A= , = ( ),解得 T=, = =2再由五点法作图可得 2( )+ =,解得: = ,故 f(x)= sin(2x ),故 f( )= sin( )= sin = ,故选:C【点评】本题主要考查由函数 y=Asin(x+)的部分图象求函数的解析式,属于中档题8 【答案】B精选高中模拟试卷第 10 页,共 18 页【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知 需从开始,要取得
12、最大值为,由图可知m的右端点为,故 的取值范围是 .m2,4考点:二次函数图象与性质9 【答案】D【解析】解:S n=n2+2n(n N*),当 n=1 时,a 1=S1=3;当 n2 时,a n=SnSn1=(n 2+2n)(n1)2+2(n 1)=2n+1 = = , + + = + += 故选:D【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题10【答案】C【解析】解:由题设知 a10,当 q=1 时,S 4=4a110a1=5S2;q=1 不成立精选高中模拟试卷第 11 页,共 18 页当 q1 时,S n= ,由 S4=5S2 得 1q4=5(1q
13、2),( q24)(q 21)=0,(q2)( q+2)(q1)(q+1)=0,解得 q=1 或 q=2,或 q=2= =q, =1 或 =2故选:C【点评】本题主要考查等比数列和等差数列的通项公式的应用,利用条件求出等比数列的通项公式,以及对数的运算法则是解决本题的关键11【答案】 B【解析】解:F(x)=f (x)g(x)=f(x)f(x 0)(xx 0) f(x 0),F (x )=f(x)f(x 0)F (x 0)=0,又由 ax 0b,得出当 axx 0 时,f (x)f(x 0),F(x)0,当 x0xb 时,f(x)f(x 0),F(x)0,x=x 0 是 F(x)的极小值点故选
14、 B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于 0,反之当导函数等于 0 时还要判断原函数的单调性才能确定是否有极值12【答案】 B【解析】解:由题意,不等式 f(x)g(x)在1 ,e上有解,mx2lnx,即 在1,e 上有解,令 h(x)= ,则 h(x)= ,1xe,h(x)0,h(x) max=h(e)= ,精选高中模拟试卷第 12 页,共 18 页 h(e)= ,m m 的取值范围是(, )故选:B【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用二、填空题13【答案】 6 【解析】解:双
15、曲线的方程为 4x29y2=36,即为: =1,可得 a=3,则双曲线的实轴长为 2a=6故答案为:6【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题14【答案】 714,【解析】15【答案】精选高中模拟试卷第 13 页,共 18 页【解析】由框图的算法功能可知,输出的数为三个数的方差,则 。16【答案】 217【解析】17【答案】 ( , ) 【解析】解: , ,设 OC 与 AB 交于 D(x,y)点则:AD:BD=1 :5即 D 分有向线段 AB 所成的比为精选高中模拟试卷第 14 页,共 18 页则解得:又| |=2 =( , )故答案为:( ,
16、)【点评】如果已知,有向线段 A(x 1,y 1),B(x 2,y 2)及点 C 分线段 AB 所成的比,求分点 C 的坐标,可将 A,B 两点的坐标代入定比分点坐标公式:坐标公式 进行求解18【答案】 70 【解析】解:根据题意二项式 展开式中,仅有第五项的二项式系数最大,则 n=8,所以二项式 = 展开式的通项为Tr+1=( 1) rC8rx82r令 82r=0 得 r=4则其常数项为 C84=70故答案为 70【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别精选高中模拟试卷第 15 页,共 18 页三、解答题19【答案】 【解析】解:(1) (2) 可
17、取 0,1,2,3,4,P(=0)=(1 ) 2(1 ) 2= ;P(=1)= ( )(1 ) ( )2+ (1 ) 2 = ;P(=2)= + += ;P(=3)= = ;P(=4)= = 的分布列为: 0 1 2 3 4PE=0 +1 +2 +3 +4 = 【点评】本题主要考查 n 次独立重复实验中恰好发生 k 次的概率,等可能事件的概率,体现了分类讨论的数学思想,属于中档题20【答案】【解析】(1)解:赞成率为 ,被调查者的平均年龄为 200.12+300.2+400.24+500.24+600.1+700.1=43(2)解:由题意知 的可能取值为 0,1,2,3,精选高中模拟试卷第 1
18、6 页,共 18 页, 的分布列为: 0 1 2 3P 【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题21【答案】 【解析】解:(1) =1i (2)a(1+i)+b=1i,即 a+b+ai=1i, ,解得 a=1,b=2【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键22【答案】 【解析】 解:()点 A 是单位圆与 x 轴正半轴的交点,B( , )可得 sin= , cos= , cos+sin= ()因为 P(cos2,sin2),A (1,0)所以 = =(1+cos2
19、 ,sin2 ),所以 = = =2|cos|,因为 ,所以 =2|cos| ,| |的最大值 精选高中模拟试卷第 17 页,共 18 页【点评】本题考查三角函数的定义的应用,三角函数最值的求法,考查计算能力23【答案】 【解析】解:()函数 f( x)的定义域为(0,+ ),且 f(x)= = 当 a0 时,f (x)0,所以 f(x)在区间(0,+)内单调递增;当 a0 时,由 f(x)0,解得 xa;由 f(x)0,解得 0xa所以 f(x)的单调递增区间为( a,+),单调递减区间为(0,a)综上述:a0 时,f(x)的单调递增区间是(0,+);a0 时,f(x)的单调递减区间是(0,
20、a),单调递增区间是( a,+)()()由()知,当 a0 时,f(x)无最小值,不合题意;当 a0 时,f(x) min=f(a)=1a+lna=0 ,令 g(x)=1 x+lnx(x0),则 g(x)= 1+ = ,由 g(x)0,解得 0x1;由 g(x)0,解得 x1所以 g(x)的单调递增区间为(0,1),单调递减区间为(1,+)故g(x) max=g(1)=0,即当且仅当 x=1 时,g(x)=0因此,a=1()因为 f(x)=lnx 1+ ,所以 an+1=f(a n)+2=1+ +lnan由 a1=1 得 a2=2 于是 a3= +ln2因为 ln2 1,所以 2a 3 猜想当
21、 n3,n N 时,2a n 下面用数学归纳法进行证明当 n=3 时, a3= +ln2,故 2a 3 成立假设当 n=k(k 3,kN)时,不等式 2a k 成立则当 n=k+1 时,a k+1=1+ +lnak,由()知函数 h(x)=f(x)+2=1+ +lnx 在区间(2, )单调递增,所以 h(2)h(a k)h( ),又因为 h(2)=1+ +ln22,h( )=1+ +ln 1+ +1 精选高中模拟试卷第 18 页,共 18 页故 2a k+1 成立,即当 n=k+1 时,不等式成立根据可知,当 n3,nN 时,不等式 2a n 成立综上可得,n1 时a n=2【点评】本题主要考
22、查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题24【答案】 【解析】解:()由题意知,tanA= ,则 = ,即有 sinAsinAcosC=cosAsinC,所以 sinA=sinAcosC+cosAsinC=sin(A+C )=sinB,由正弦定理,a=b,则 =1;()因为三角形ABC 的面积为 ,a=b、c= ,所以 S= absinC= a2sinC= ,则 ,由余弦定理得, = ,由得,cosC+ sinC=1,则 2sin(C+ )=1,sin (C+ )= ,又 0C,则 C+ ,即 C+ = ,解得 C= 【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题