1、16 1 2010 M3空 间 结 构SPATIAL STRUCTURESVol.16 No.1Mar.2010l :2009-02-11. “:SE1 S “(50708092); 81 S “(1080363).Te: o(1977), 3, ,p V,V Y bW、 %T.E-mail:% . ZEZ苏 波1, 钱若军2, 袁行飞3(1. v , 212013;2.6vr !, Z200092;3.vy,s310058)K 1: r .ZE LC %(FSI)s1o, % . ZE.B , % . N : Hq、 Hq# ? .|.ZE9 E8E v . E E、F E、8EZE,i #
2、 E;8E “Hf E、ShepardZE、_f E.K 5 CSD、CFDW HW T.V ZE % % .54 .1oM: %; .; ? ; E;8Ems |:TU311.3;O242.2 DS :A cI|:1006-6578(2010)01-0003-08Advancesinresearchontheoryandmethodofdataexchangeoncouplinginterface forFSIanalysisSU Bo1, QIAN Ruo-jun2, YUAN Xing-fei3(1.Faculty of Science, JiangsuUniversity, Zhenj
3、iang 212013, China;2.Collegeof Civil Engineering, TongjiUniversity, Shanghai 200092, China;3.Collegeof Civil Engineering and Architecture, ZhejiangUniversity, Hangzhou 310058, China)Abstract:It is a key step to find a proper and effective dataexchangeapproach forFSIanalysis.The theoryand method of d
4、ata exchange on fluid-structureinteraction is studied.The basic principle for data exchangeis deduced including kinematics continuity condition, dynamics continuity condition and energy conserva-tion.The data exchange methods can be classified into two main categories:localinterpolation method andgl
5、obal interpolation method.Mapping point interpolation, weight residual method, Constant Volume Tet-rahedron(CVT)are studied in local interpolation method.The search algorithm forhost element and map-ping point is also given.Splines method, Shepard method and radial based function(RBF)are studied ing
6、lobal interpolation method.The time interpolation modes between CSD、CFD for transient problems arealso given.The paper can be a direction in theory and method of data exchange on coupling interface forFSI computation.Keywords:fluid-structure interaction;data exchange;energy conservation;local interp
7、olation method;global interpolation method.“9 ?Z9 9 ? 4, s 7 Sr. ZEg V ?C 5,N H E16,17 .4 8E4.1 “Hf EEK* t b 5 tM9 .Harder(1971)184 K “HE(IPS),ZEBKs Zm5 +9 sZEFig.4 Different split methods for computation fieldF p.Yu19IPST B,iI M9 .IPS d RBZE, MSC/NASTRAN.Appa(1989)20 IPSEV = H V L,i4KV (FPS).FPS B“
8、 Hq, PMV .N,y M,. . . V % WM、 ,S ,. ? _“d J . ,2006,27(3):505-507.MING Ting-zhen,LIU Wei,XU Guo-liang,et al.A Stud-y of the solar chimney prower plant systems J .Journalof Engineering Thermophysics, 2006,27(3):505-507. 4 ADINA R&D.ADINA Theory and Modeling Guide-Volume III:ADINA CFD & FSI M .Waterto
9、wn:ADINA R&D.Inc,2005. 5 + W,. Y %rZ J .y S,2006,23(1):1-9.SHEN Shi-zhao, WU Yue.Research progress on fluid-solid interaction effect of wind-induced vibration re-sponse of membrane structure J .Journal of Architec-ture and Civil Engineering, 2006, 23(1):1-9.6 DE BOER C, VAN ZUIJLEN VAN A H,BIJL H.Re
10、-view of coupling methods for non-matching meshes J .Computer Methods in Applied Mechanics and Engineer-ing,2007,196 :1515-1525. 7 FARHA T C, LESOINNEA M, LE TALLECH P.Load and motion transfer algorithms for fluid/ struc-ture interaction problems with non-matching discreteinterfaces:Momentum and ene
11、rgy conservation, opti-mal discretization and application to aeroelasticity J .Computer Methods in Applied Mechanics and Engineer-ing, 1998,157:95-114.8 JAIMAN R K, JIAO X, GEUBELLE P H, et al.Con-servative load transfer along curved fluid-solid interfacewith non-matching meshes J .Journal of Comput
12、ationalPhysics, 2006,218:372-397.9 BATHE K J, ZHANG H, SHAN Ji.Finite elementanalysis of fluid flows fully coupled with structural10 空 间 结 构 第16卷interactions J.Computers &Structures, 1999,72(1):1-16. 10 DETTM ER W, PERI D.A computational frameworkfor fluid-rigid body interaction:finite element formu
13、la-tion and applications J .Computer Methods in Ap-plied Methanics and Englneering, 2006, 195:1633-1666. 11 DETTMER W, PERI D.A computational frameworkfor fluid-structure interaction:finite element formula-tion and applications J .Computer Methods in Ap-plied Mechanics and Engineering, 2006, 195:575
14、4-5779. 12 STEIN K, BENNEY R, KALRO V, et al.Parachutefuid-structure interactions:3-D computationJ .Com-puter Methods in Applied Mechanics and Engineering,2000,190:373-386. 13 GOURA G S, BADCOCK K J, et al.A data exchangemethod for fluid-structure interaction problems J .The Aeronautical Journal,200
15、1,105:215-221. 14 ,r , V.CFD/ CSD9 J . ,2004, 21(2):33-37.XU Min, AN Xiao-min, CHEN Shi-lu.Study of dateexchange metod for coupling computational CFD/CSD J .Chinese Jouranal of Applied M echanics, 2004, 21(2):33-37. 15 ,r , V.BCFD/ CSD9 ZE J .t b,2006,27(1):33-37.XU Min, AN Xiao-min, CHEN Shi-lu.CFD
16、/ CSDcouping numerical computational methodology J.Ac-ta Aeronau Ticaet Astronau TicaSinica, 2006,27(1):33-37. 16 CEBRAL J R.Loose Coupling Algorithms for Fluid-Structure Interaction D . University ofBuenous,1991. 17 LOBNER R.Robust, vectorized search algorithms forinterpolation on unstructured Grid
17、s J.Journal ofComputational Physics, 1995,118:380-387. 18 ROBERT L Harder, ROBERT N Desmarais.Interpo-lation using surface splines J.Journal of Aircraft,1972,9(2):189-191. 19 YU Z W.Surface interpolation from irregularlydistributed points using surface splines with Fortranprogram J .Computers & Geos
18、ciences, 2001, 127:877-882.20 APPA K.Finite-surface spline J .Joural of Aircraft,1989,26(5):495-496.21 PIDAPARTI R M V.Structural and aerodynamic datatransformation using inverse isoparametric mapping J .Journal of Aircraft, 1992, 29(3):507-509.22 , N +, V.B 89 5 ZE J .v,2003,21(5):532-535.XU Ming,
19、SHI Zhong-jun, CHEN Shi-lu.A suitablemethod for transferring information between CFD andCSD Grids J .Journal of Northernwestern Polytechni-cal University,2003, 21(5):532-535. 23 DUCHON J.Splines minimizing rotation-invariantsemi-norms in Sobolev spaces A.Constructive theo-ry of functions of several
20、variables M, Springer Ber-lin/ Heidelberg, 1976.24 HA RDY R L.Multiquadric equations of topographyand other irregular surfaces J .Journal of GeophysicsResearch, 1971,76(8):1905-1915.25 SMITH M J, HODGES D H, CESNIK C E S.An e-valuation of computational algorithms to interface be-tween CFD and CSD me
21、thodologies J.AIAA Jour-nal, 1996,37:45-755. 26 SHEPARD D.A two dimensional interpolation func-tion for regularly spaced data A.Proceedings of 23dNational Conference of the Association for ComputingM achineryC , Princeton, NJ, ACM, 1968:517-524.277 . y E 、ZE M.:S,2007. 28 MARTIN D Buhmann.Radial Bas
22、is Functions :Theo-ry and Implementations M .Cambridge UniversityPress,2004.29 WU Z M.M ultivariate compactly supported positivedefinite radial functions J .Advances in Computa-tional M athematics,1995,4 :283-292.307 ._f 、 y E sZ J. , 2002,19(2):1-12.WU Zong-min.Radial basis function scattered data in-terpolation and the meshless method of numericalsolution of PDEs J .Journal of Engineering Mathe-matics, 2002, 19(2):1-12. 31 FRANK R.Scattered datainterpolation :tests of somemethods J.M athematics Computation, 1982, 38:191-200.