收藏 分享(赏)

隐马尔科夫模型介绍.doc

上传人:hskm5268 文档编号:8928897 上传时间:2019-07-17 格式:DOC 页数:1 大小:27.50KB
下载 相关 举报
隐马尔科夫模型介绍.doc_第1页
第1页 / 共1页
亲,该文档总共1页,全部预览完了,如果喜欢就下载吧!
资源描述

1、隐马尔科夫模型介绍隐马尔可夫模型可以用五个元素来描述:1.N,模型的隐状态数目。虽然这些状态是隐含的,但在许多实际应用中,模型的状态通常有具体的物理意义2.M,每个状态的不同观测值的数目。3.A , 状态转移概率矩阵。描述了 HMM 模型中各个状态之间的转移概率。其中A_IJ= P(A_T+1 =S_J | Q_T=S_I),1I,JN. (1)式(1)表示在 T 时刻、状态为 SI 的条件下,在 T+1 时刻状态是 SJ 的概率。4. B ,观测概率矩阵。其中BJ(K) = PVK(T) | QT = SJ; 1JN,1KM.表示在 T 时刻、状态是 SJ 条件下,观察符号为 VK(T)的概

2、率。5. 初始状态概率矩阵 =_J| _J= PQ_1 = S_J;1JN.表示在初始 T=1 时刻状态为 SJ 的概率。一般的,可以用 =(A,B,)来简洁的表示一个隐马尔可夫模型。给定了 N,M,A,B, 后,隐马尔可夫模型可以产生一个观测序列 O=O1O2O3OTHMM 需要解决三个基本问题:*1 评估问题:给定观测序列 O=O1O2O3OT 和模型参数 =(A,B,),怎样有效计算某一观测序列的概率.*2 解码问题给定观测序列 O=O1O2O3OT 和模型参数 =(A,B,),怎样寻找某种意义上最优的状态序列.*3 学习问题怎样调整模型参数 =(A,B,),使其最大?基本算法针对以上三个问题,人们提出了相应的算法*1 评估问题: 向前向后算法*2 解码问题: VITERBI 算法*3 学习问题: BAUM-WELCH 算法

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报