收藏 分享(赏)

大学数学课件一.ppt

上传人:精品资料 文档编号:8911452 上传时间:2019-07-16 格式:PPT 页数:85 大小:3.25MB
下载 相关 举报
大学数学课件一.ppt_第1页
第1页 / 共85页
大学数学课件一.ppt_第2页
第2页 / 共85页
大学数学课件一.ppt_第3页
第3页 / 共85页
大学数学课件一.ppt_第4页
第4页 / 共85页
大学数学课件一.ppt_第5页
第5页 / 共85页
点击查看更多>>
资源描述

1、1文科生为什么要学习大学数学?,数学是一种语言,一切科学的共同语言 严密性、精确性,数学是一把钥匙,一把打开科学大门的钥匙 科学素养,数学是一种工具,一种思维的工具 理性思维,数学是一门艺术,一门创造性艺术 美的熏陶,数学发展的五个时期,数学的萌芽时期 初等数学时期 变量数学时期 近代数学时期 现代数学时期,数学的萌芽时期 (至公元前六、五世纪),大约在三百万年前,人类还处于茹毛饮血的原始时代,以采集野果,围猎野兽为生. 在集体劳动和“平均”分配的体制下,他们学会了在捕获一头猎物后用一块石子、一根木头来代表如此等等. 后来,人类在日常生活和生产实践中渐渐产生了计数的意识,并摸索出了多种计数方法

2、,开始了结绳计数,掷石数羊和土地测量. 这也就是数学的源起. 巴比伦,古埃及,古印度,初等数学时期,古希腊数学(公元前6世纪至公元6世纪),(公元前6世纪至公元17世纪),第一个时期:从伊奥尼亚学派到柏拉图学派为止,约为公元前七世纪中叶到公元前三世纪,伊奥尼亚学派(泰勒斯,几何论证之父)开始了命题的证明,它标志着人们对客观事物的认识从感性上升到理性,这在数学史上是一个不寻常的飞跃. 毕达哥拉斯学派 “万物皆数”,勾股定理 柏拉图学派 “不懂几何者不得入内” 重视数学的严谨性,在教学中,坚持准确地定义数学概念,强调清晰地阐述逻辑证明,系统地运用分析方法和推理方法.,第一次数学危机,希帕索斯, 的

3、发现 否定了毕达哥拉斯学派的信条 直觉和经验不一定靠得住,而推理证明才是可靠的. 从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何学体系,这不能不说是数学思想上一次巨大革命,这也是第一次数学危机的自然产物. 第一次数学危机的产物古典逻辑与欧氏几何学,进入封建时代后,数学的发展经历了一个黑暗的时期. 直到欧洲文艺复兴,数学重新进入了一个伟大的时代!,1 微积分的基础集合、实数和极限,1.1 从牛顿的流数法和第二次数学危机谈起,(1)微积分的建立 进入17世纪,科技发展给数学提出了四类问题: 瞬时速度问题; 曲线的切线; 函数极值问题; 求积问题(曲线长度、图形面积等)。,b. 英

4、国数学家牛顿(Newton,1642-1727)和德国数学家莱布尼兹(Leibniz,1646-1716)分别独立地建立了微积分。,牛顿 莱布尼茨,c.牛顿、莱布尼茨对微积分的主要贡献,澄清概念特别是建立导数(变化率)的概念; 提炼方法从解决具体问题的方法中提炼、创立出普遍适用的微积分方法; 改变形式把概念与方法的几何形式变成解析形式,使其应用更广泛; 确定关系确定微分和积分互为逆运算。,(2)微积分的特点 与以往的数学相比:微积分的突出特点是可以研究不断变化的事物现象 运动,是变量数学的标志。,(3)微积分的应用 从17世纪末到19世纪初,微积分理论被广泛而有效地应用于物理、天文等领域。,(

5、4)微积分存在的问题,理论体系粗糙,极不严密。它的一些定理和公式在推导过程前后出现逻辑矛盾,使人们感到难以理解,这种矛盾集中体现在对“无穷小量”的理解与处理中。,第二次数学危机 无穷小量究竟是不是零?两种答案都会导致矛盾. 牛顿对它曾作过三种不同解释:1669年说它是一种常量;1671年又说它是一个趋于零的变量;1676年它被“两个正在消逝的量的最终比”所代替. 但是,他始终无法解决上述矛盾. 莱布尼兹曾试图用和无穷小量成比例的有限量的差分来代替无穷小量,但是他也没有找到从有限量过渡到无穷小量的桥梁. 英国大主教贝克莱于1734年写文章,攻击流数(导数) “是消失了的量的鬼魂”他说,用忽略高阶

6、无穷小而消除了原有的错误, “是依靠双重的错误得到了虽然不科学却是正确的结果” . 很显然,贝克莱抓住了当时微积分、无穷小方法中一些不清楚不合逻辑的问题,尽管他是出自对科学的厌恶和对宗教的维护,而不是出自对科学的追求和探索,事实上大大地促进了数学发展. 罗尔曾说:“微积分是巧妙的谬论的汇集.”在那个勇于创造时代的初期,科学中逻辑上存在这样那样的问题,并不是个别现象.,19世纪初,法国数学家柯西建立了严格的极限理论,后来德国数学家魏尔斯特拉斯等加以完善,从而形成了严密的实数理论。由此把微积分的无矛盾性问题归结为实数系统的无矛盾问题。,(5)微积分的严密化,微积分得以严密化的基础是: 实数系统的完

7、备性(或连续性),对象:函数 内容:微分、积分,以及连接微分与积分的桥梁微积分基本定理。 工具:极限,微积分研究的对象、内容及工具,函数:物质世界的基本模型 世界是物质的,物质是运动的,运动是相互联系的。这种相互联系的物质运动大都可以被数学家抽象为以数量之间的变化关系为基本特征的数学模型函数。数学模型是人类认识与改造世界的一个基本手段。,对象:函数,有些事物的变化是离散的 比如: 随着时间的推移,中国奥运金牌的数量; 随着时间的推移,母鸡下蛋的数量; 随着重量的增加,邮局邮寄包裹的价格; 随着路程的增大,乘坐出租车的费用; ,0,有些事物的变化则是连续的 比如: 随着时间的推移,一辆汽车行走距

8、离、速度的变化;人的动作; 随着时间的推移,某地气温的变化; 随着半径的增大,圆盘面积的变化; 随着气压的增高,水的沸点的变化; ,常值函数; 幂函数与根式函数; 三角函数与反三角函数; 指数函数与对数函数 通过它们的有限次四则运算、复合运算所得到的函数及其反函数。 ,函数既有具有具体表达式的初等函数,也有更多的不能具体通过代数式表示、但却具有实际意义的函数,以及一般的抽象函数。,微积分:研究连续性变化 连续性变化的情况涉及到每一个瞬间,涉及到“无穷小”的时间段内的变化情况,人类是无法精确捕捉到的。如何研究? 动画片如何表现连续动作? 切片!很短时间内的一种静止画面。,“微小的差异”是微分积分

9、的奥秘!观察某一微小变化 = 微分 连接一系列微小变化 =积分,微分:函数的局部性质 函数表示的是因变量依赖于自变量的变化关系,函数值反映的是变化结果,但不能反映变化速度。函数的微分刻画的正是函数的瞬时变化速度。 平均速度 VS 瞬时速度,内容:微分、积分,二者关系,积分:函数的整体性质 一个运动器每一时刻都有一个瞬时速度,从而会行走一段距离;但是在一定时间内,速度可能在变,如何知道变速运动在一定时间内的运行路程,这就是积分问题。积分问题是研究函数的整体变化性质。,对于一个给定函数来说,局部与整体是一个事物的两个方面,二者是对立的统一。 因此,微分与积分具有密切关系,积分问题是由函数的局部性质

10、研究整体性质。建立二者关系的桥梁是 微积分基本定理牛顿-莱布尼茨公式。,极限:人类认识无限的必要手段 由于生理的原因,人类只能看到有限时间、有限范围内的事物;只能判断、测量在一定时间段内事物的变化量与平均变化速度。要认识无限变化的事物,要确定事物瞬时变化的情况等,极限是一个有效工具。,工具:极限,平均速度 VS 瞬时速度时刻 t 之后 s 秒内的平均速度 = s 秒内的行走路程 d/s时间幅度 s 无限趋近于0 时刻 t 的瞬时速度,直边图形面积 VS 曲边图形面积,微积分研究函数的基本观点是 以静代动;以直代曲。,传统的处理方法 视为公理; 利用实数的直观表示:无限小数; 利用戴德金分割理论

11、。,1.3 实数系的建立及邻域概念,什么是“数” ?,数是用来反映量的,是量的抽象.,自然数:0,1,2,3,.,分数:有限小数或无限循环小数.,分数都是有限小数或无限循环小数,反之亦然.,回忆,有理数(rational number): 0 和正负分数.,无理数(irrational number): 正负无限不循环小数.,实数,整数(integer):0, .,记号: 有理数集 Q; 实数集 R,数系扩充的科学道理,自然数中减法产生负数, 整数系统; 整数中除法产生分数, 有理数系统; 自然数中开方产生无理数, 实数系统; 负数中开方产生虚数, 复数系统。,有理数集是最小的数域(代数性质)

12、有理数的运算及其法则来源于整数;有理数集在四则运算下是封闭的,而且加法、乘法满足结合律与交换律,并且乘法对加法满足分配律,具有这种性质的数集叫做数域。,有理数集的性质,有理数是有序的、可数的(集合性质)像自然数一样,有理数可以比较大小,是有序的,因此可以在数轴上排列出来。可以与自然数一一对应。,-1 0 1,有理数在数轴上是稠密的、和谐的(几何性质)。稠密性:任意两个有理数之间,必然存在第三个有理数,而不管这两个有理数有多么接近。和谐性:有理数之间相处得亲密无间,对任意一个给定的有理数,永远找不到一个与之最接近的有理数。,这里有有理数,这两位之间有有理数,从代数上看, 有理数在四则运算下是封闭

13、的, 构成一个数域。 从几何上看,有理数在数轴上是稠密的, 因此,要去度量任何一件实际事物, 不论要求多高的精度, 只要有理数就够了。 从集合上看,有理数是有序的、可数的, 可以在数轴上排列出来, 可以与自然数一一对应。,说说有理数的缺陷,由于有理数有许多不完备的地方,如果不对有理数进行扩充,关于极限的运算就无法进行,从而也就不会有微积分。 有理数扩充的直接结果是实数集。 关于实数,长期以来,人们只是直觉地去认识:有理数是有限小数或无限循环小数,无理数是无限不循环小数,有理数与无理数统称为实数。,实数数集产生的必要性,如何定义实数?如何表示实数? 实数是否能够填满整个数轴? 实数是否是有序的?

14、 实数运算如何进行?法则如何?,Question,19世纪,德国数学家 康托(G. Cantor, 1845-1918)、 戴德金(J. W. R. Dedekind, 18311916) 、 魏尔斯特拉斯( K. W. T. Weierstrass, 18151897 ) 通过对无理数本质进行深入研究,奠定了实数构造理论,明确解决了以上问题。,1845年出生于圣彼得堡,犹太人后裔。 11 岁时进入德国,1867 年获柏林大学的博士学位,1872 年升为教授。 1874 年开始研究比较无穷集的元素多少问题。,戴德金R. (Dedekind, Richard) 1831年10月 6日生于德国不伦

15、瑞克; 1916 年2月12 日卒于不伦瑞克。 数学家。,Weierstrass (1815 1897)德国数学家 先修财务、管理、法律,后学数学 1854年,哥尼斯堡大学名誉博士;1856年,柏林科学院院士 数论、几何、复分析,对和、乘法、减法封闭,有理点在数轴上稠密分布, 不具有连续性,将所学过的数归纳如下:,一、实数,具有连续性,对和、乘法封闭,对减法不封闭,微积分研究的是连续变化的事物在数量 方面的关系,今后所指的数是实数.,二、邻域(neighborhood ),集合表示法:区间表示法:几何表示法:,邻域的表示方法:,邻域的定义:,数轴上与点x0的距离小于(0)的全体实数的集合,称为

16、点x0的邻域,记作U(x0,),x0称为邻域的中心,称为邻域的半径.,邻域,记作,邻域 的几何表示:, 去心邻域(deleted neighborhood),。,例 :用邻域符号和区间符号分别表示不等式 所确定的 x 的范围.,解:,已知 不等式,用区间表示是,用邻域符号表示是,第二节,主要内容: 函数、基本初等函数与复合函数,微积分的研究对象-函数,一、函数 ( function ),常量(constant):,保持不变的量.,如常数 1、2、50、e、,变量(variable):,可以取不同值的量.,如 sinx 中的 x,ln(1+ x)中的 x,定义(传统定义):如果在变化过程中有两个

17、变量x , y, x在某个变化范围 X 内的某一确定的值,按照某个对应法则 f , y 都有唯一确定的值与它对应,那么 y 就是 x 的函数.记作y = f (x),称 x 为自变量, X 是 f 的定义域(domain of definition),全体函数值的集合称作函数的值域.,函数的定义表明了函数的结构.,函数是由定义域、 对应法则、值域组成 的.,函数的模型如同一部机器,把X中任一原材料x输入f(x),就可产出实数 y = f(x).,定义域,自变量,因变量,定义域是自变量所能取的,使算式有意义的一切实数值.,y=f(x),对应规律的表示方法:,解析法,、图象法,、列表法,如果两个函

18、数的定义域相同,对应法则也相同,那么这两个函数就是相等的.,如,如果两个函数定义域和对应法则二者有一个不同,那么这两个函数是不同的.,如,函数的性质:,单调性、奇偶性、周期性 有界性:,二、反函数的定义,设函数 ,Y 是值域.如果对于Y 内 的任一 y, D内都有唯一确定的 x 与之对应,使 f (x) = y, 则在Y 上确定了一个函数,这个函数称为 函数 y = f ( x )的反函数.记作 x = f 1( y ), y 属于 Y.,原来的函数 y = f ( x ) 称为直接函数.,直接函数与反函数的图形关于直线 y = x对称.,反函数存在性定理:,单调函数存在反函数,且直接函数与其

19、反函数单调性相同.,三、基本初等函数,1、幂函数,(1,1),2、指数函数,(0,1),3、对数函数,(1,0),4、三角函数,正弦函数,余弦函数,y= sinx,y =cos x 的定义域是(,),值域是 1,1,以2为最小周期,有界函数,正切函数,余切函数,5、反三角函数,渐近线,渐近线,把常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为,基本初等函数,解:,两个函数和的定义域,是这两个函数定义域 公共部分.,例:,中间变量,自变量,四、复合函数( complex function),分解复合函数原 原则: 观察各层函数是否为基本初等函数或多项式函数.,初等函数:由基本初等函数经过有限次四则运算和复合运算构成的函数并可用一个式子表示的函数.,指数函数,幂函数,多项式函数,注意:,1.不是任何两个函数都可以复合成一个复合函数的.,2.复合函数可以由两个以上的函数经过复合构成.,中间变量,中间变量,自变量,把一个复合函数分成不同层次的函数,叫做复合 函数的分解.,分段函数:不能用统一的代数式表示的函数.如:,须注意:分段函数不是初等函数.分段函数是一个函数.只是随着自变量 x 取不同范围的值,函数的表达式不同.,综上所论:,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报