1、1.序列 x(n)的能量定义为 序列各抽样样值的平方和 2.线性移不变系统是因果系统的充分必要条件是 h(n)=0 n03.设两个有限长序列的长度分别为 N 和 M,则它们线性卷积的结果序列长度为 N+M-14.线性系统同时满足_可加性_和_比例性_两个性质5.某线性移不变系统当输入 x(n) =(n-1) 时输出 y(n) =(n -2) + (n -3),则该系统的单位冲激响应 h(n)=(n-1)+(n -2)6.如果通用计算机的速度为平均每次复数乘需要s,每次复数加需要 1s,则在此计算机上计算 210 点的基 2FFT 需要_10_级蝶形运算,总的运算时间是_30720_s7.FFT
2、 的基本运算单元称为_ 蝶形 _运算。8.一个短序列与一个长序列卷积时,有_重叠相加法_ 和_重叠保留法_两种分段卷积法9.将模拟滤波器映射成数字滤波器主要有_ 阶跃响应不变法_、冲击响应不变法及双线性变换法等10.IIR 滤波器的基本结构分为直接 I 型、直接 II 型、_级联型_和_并联型_ 。11.傅里叶变换的四种形式_ 傅里叶变换 _,_傅里叶级数_, 序列的傅里叶变换_和_离散傅里叶变换12.使用 DFT 分析模拟信号的频谱时,可能出现的问题有_混叠现象、栅栏效应和_截断效应_13.对于 N 点(N2L)的按时间抽取的基 2FFT 算法,共需要作_N/2_次复数乘和_N_次复数加14
3、.对时间序列 x(n)后补若干个零后,其频域分辨率_不变 _,采样间隔_变小_15.巴特沃思低通滤波器的幅频特性与阶次 N 有关,当 N 越大时,通带内越平坦,过渡带和阻带内 衰减越快_16.求 z 反变换通常有围线积分法、_ 留数法_和_部分分式展开法 _等方法17.有限长序列 x(n)=(n)+2 (n-1)+3(n-2)+4(n-3) ,则其圆周移位 x2(n)=_ 3,4,1,2 _18.实现一个数字滤波器所需要的基本运算单元有加法器、单位延迟器和常数乘法器。19.在利用频率抽样法设计 FIR 低通滤波器时提高阻带衰减有效的方法是_增加过渡带抽样点_,使不连续点变成缓慢过渡20.在 F
4、IR 滤波器的窗函数设计法中,常用的窗函数有_矩形窗、哈明窗_和_凯塞窗_等等21.序列 x(n) = cos (3n)的周期等于_ 2_22.基 2 FFT 算法计算 N = 2L( L 为整数)点 DFT 需_L_级蝶形,每级由_ _N/2_个蝶形运算组成。23.在用模拟滤波器设计 IIR 数字滤波器时,模拟原型滤波器主要有_巴特沃斯_ _型滤波器、_切比雪夫_型滤波器等。24.在利用窗函数法设计 FIR 滤波器时,窗函数的窗谱性能指标中最重要的是_过渡区宽度_与_阻带最小衰减_。25.线性移不变系统的性质有_交换律_、结合律及_分配律 _26.用 DFT 近似分析连续信号频谱时, _栅栏
5、_效应是指 DFT 只能计算一些离散点上的频谱27.已知因果序列 x(n)的 Z 变换为 X(z)=e1/z,则 x(0)=_0_28.DFT 与 DFS 有密切关系,因为有限长序列可以看成周期序列的 _主值序列 ,而周期序列可以看成有限长序列的_周期延拓_29.H(z)H(z-1)的零、极点分布关于单位圆_ 互为倒数_30.对按时间抽取的基 2FFT 流图进行转置,即_将输入变输出,输出变输入_便得到按频率抽取的基 2FFT 流图31.用双线性变换法设计 IIR 数字滤波器的主要优点是避免了频率响应的_频谱混叠_ 现象32.用按时间抽取的基-2FFT 算法计算 N=2L(L 为整数)点的 D
6、FT 时,每级蝶形运算一般需要_N/2_次复数乘33.信号处理有两种形式;其中一种是(ASP 模拟信号处理) ;另一种是(DSP :数字信号处理)34.用按时间抽取的基 2 FFT 算法计算 N 点(N=2L ,L 为整数)的 DFT,共需要作 N/2log2N 次复数乘和_Nlog2N_ 次复数加35.数字滤波器按功能分包括 低通、 高通、 带通、 带阻滤波器。36.IIR 数字滤波器的基本结构中, 直接型运算累积误差较大; 级联型运算累积误差较小;并联型运算误差最小且运算速度最高37.用来计算 N16 点 DFT,直接计算需要_256_次复乘法,采用基 2FFT 算法,需要_32_ 次复乘法38.对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间信号,再进行幅度量化后就是 数字信号39.序列 n(x)的 N 点 DFT 是 n(x)的 Z 变换在 单位圆上的 N 点等间隔采样40.线性相位 FIR 数字滤波器的单位脉冲响应 h(n)应满足条件 h(n)=h(N-n-1)41.若正弦序列 x(n)=sin(30n/120)是周期的,则周期是 N=8