1、Ch1-绪论1. 回溯法解皇后问题#include “stdio.h“#include “math.h“#include “stdlib.h“void queen(int n) int i,j,k,jt,*q;q=malloc(n*sizeof(int);for(i=0; i=eps) c=(a+b)/2; f1=(*f)(c);if (f1=0) return(c);if (f0*f10) a=c;else b=c;c=(a+b)/2;return(c);(2)#include “root.c“main() double a,b,eps,f();a=1; b=2; eps=0.000001;
2、printf(“x=%7.3fn“,root(a,b,eps,f);double f(x)double x; double y;y=x+log(x)-2.2;return(y);Ch2-矩阵与线性代数方程组(1)文件头:#include “math.h“#include “stdio.h“int maqr(m,n,a,q)int m,n;double a,q; int i,j,k,l,nn,p,jj;double u,alpha,w,t;if (mu) u=w;alpha=0.0;for (i=k; i0.0) u=-u;alpha=u*sqrt(alpha);if (fabs(alpha)+
3、1.0=1.0) printf(“failn“); return(0);u=sqrt(2.0*alpha*(alpha-al);if (u+1.0)!=1.0) al=(al-alpha)/u;for (i=k+1; ik) ll=l;if (ll=1) for (kk=1; kk=n) i=n;else i=m;for (j=1; jfabs(fg1) d=fabs(d);if (fg0=fabs(fg0) d=fabs(d);if (fg1fabs(fg1) r=cs1;elseif (cs0!=0.0) r=1.0/cs0;fg0=d; fg1=r;return;#include “st
4、dio.h“#include “cgauss.c“main() int i;static double ar44= 1.0,3.0,2.0,13.0,7.0,2.0,1.0,-2.0,9.0,15.0,3.0,-2.0,-2.0,-2.0,11.0,5.0;static double ai44= 3.0,-2.0,1.0,6.0,-2.0,7.0,5.0,8.0,9.0,-3.0,15.0,1.0,-2.0,-2.0,7.0,6.0;static double br4=2.0,7.0,3.0,9.0;static double bi4=1.0,2.0,-2.0,3.0;if (cgauss(4,ar,ai,br,bi)!=0)for (i=0;i=3;i+)printf(“b(%d)=%13.7e +j %13.7en“,i,bri,bii);