1、数学考试应注意: 1、用手指着认真读题至少两遍; 2、遇到不会的题不要停留太长时间,可在题目的前面做记号。(如:“?”) 3、画图、连线时必须用尺子; 4、检查时,要注意是否有漏写、少写的情况; 第一单元 位置与方向 1、 ( 东与西)相对,(南与北)相对, (东南 西北)相对,(西南 东北)相对。 清楚以谁为标准来判断位置。 理解位置是相对的,不是绝对的。 2、 地图通常是按(上北、下南、左西、右东)来绘制的。 ( 做题时先标出北南西东。 ) 3、 会看简单的路线图,会描述行走路线。 一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如
2、:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。 4.、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。 5.、 生活中的方位知识: 北斗星永远在北方。 影子与太阳的方向相对。 早上太阳在东方,中午在南方,傍晚在西方。 风向与物体倾斜的方向相反。 ( 刮风时的树朝风向相对的方向弯,烟朝风 向相对的方向飘 ) 第二单元 除数是一位数的除法 1、口算时要注意: ( 1) 0除以任何数( 0除外)都等于 0; ( 2) 0乘以任何数都得 0; ( 3) 0加任何数都得任何数本身; ( 4) 任何数减 0
3、都得任何数本身 。 2、没有余数的除法: 被除数除数 =商 商除数 =被除数 被除数商 =除数 有余数的除法: 被除数除数 =商余数 商除数 +余数 =被除数 (被除数 余数)商 =除数 3、笔算除法顺序: 确定商的位数,试商,检查,验算。 ( 1)一位数除两位数 (商是两位数 )的笔算方法:先用一位数除十位上的 数,如果有余数,要把余数和个位上的数合起来,再用除数去除。除到被除数的哪一位,就把商写在那一位上面。 ( 2)一位数除三位数的笔算方法:先从被除数的最高位除起,如果最高位不够商 1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商 1,就在这一位商 0;每次除得的余
4、数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。 ( 3)除法的验算方法: 没有余数的除法的验算方法:商 除数:被除数; 有余数的除法的验算方法:商 除数 +余数 =被除数。 4、基本规律: ( 1)从高位除起,除到哪一位,就把 商写在那一位; ( 2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。) ( 3)哪一位有余数,就和后面一位上的数合起来再除; ( 4)哪一位上不够商 1,就添 0占位; 每一次除得的余数 一定 要比除数小 。 第二单元 课外知识拓展 5、 2、 3、 5倍数的特点 2 的倍数 :个位上是 2、 4
5、、 6、 8、 0的数是 2的倍数。 5 的倍数: 个位上是 0或 5的数是 5的倍数。 3 的倍数: 各个数位上的数字加起来的和是 3的倍数,这个数就是 3的倍数。比如:462, 4+6+2=12, 12是 3的倍数, 所以 462是 3的倍数。 6、关于倍数问题: 两数和倍数和 1倍的数 两数差倍数差 1倍的数 例:已知甲数是乙数的 5倍,甲乙两数的和是 24,求甲乙两数? 这里把乙数看成 1倍的数,那甲数就是 5倍的数。它们加起来就相当于乙数的 6倍了,而它们加起来的和是 24。这也就相当于说乙数的 6倍是 24。所以乙数为: 24 6=4,甲数为: 4 5=20 同样: 若已知甲数是乙
6、数的 5 倍,甲乙两数之差是 24,求甲乙两数? 这里把乙数看成 1倍的数,那甲数就是 5 倍的数。它们的差就相当于乙数的 4倍了,而它们的差是 24。这也就相当于说乙数的 4倍是 24。所以乙数为: 24 4=6,甲数为: 6 5=30 7、和差问题 (两数和 两数差) 2=较小的数 (两数和 + 两数差) 2=较大的数 例:已知甲乙两数之和是 37,两数之差是 19,求甲乙两数各是多少? 如图: 解析:如果给甲数加上“乙数比甲数多的部分(两数差)”(虚线部分),则由图知,甲数 +两数差 =乙数。如是: 甲数 +两数差 +乙数 =甲数 +乙数 +两数差 =两数和 +两数差 又有: 甲数 +两
7、数差 +乙数 =乙数 +乙数 =乙数 2 知道:两数和 +两数差 =乙数 2 (两数和 + 两数差) 2=乙数 解:假设乙数是较大的数。乙:( 37+19) 2=28 甲: 28-19=9 8、锯木头问题。 王叔叔把一根木条锯成 4 段用 12 分钟,锯成 5段需要多长时间? 如图,锯成 4段只用锯 3次,也就是锯 3次要 12 分钟,那么可以知道锯一次要: 12 3=4(分钟) 而锯成 5段只用锯 4次,所需时间为: 4 4=16(分钟) 9、巧用余数解决问题。 ( ) 8=6 ( ),求被除数最大是 ,最小是 。 根据除法中“余数一定要比除数小”规则,余数最大应是 7,最小应是 1。 再由
8、公式: 商除数 +余数 =被除数, 知道被除数最大应是 6 8+7=55,最小应是 6 8+1=49。 少年宫有一串彩灯,按 1红, 2黄, 3 绿排列着,请你 猜一猜第 89个是什么颜色? 由图可知,彩灯一组为: 1+2+3=6(个),照这样下去, 89 6=14(组) 5(个)第 89个已经有像上面的这样 6个 一组 14 组,还多余 5个;这 5个再照 1 红, 2黄,3 绿排列 下去,第 5 个就是绿色的了。 加一份和减一份的余数问题。 例 1: 38 个去划船,每条船限坐 4个,一共要几条船? 38 4=9(条) 2(人) 余下的 2人也要 1条船 ,9+1=10条。 答:一共要 1
9、0条船。 例 2:做一件成人衣服要 3米布,现在有 17米布,能做几件成人衣服? 17 3=5(件) 2(米) 余下的 2米布不能做一件成人衣服 答:能做 5件成人衣服。 第三单元 复式统计表 1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是 复式统计表 。 2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。 第四单元 两位数乘以两位数 口算乘法 1、两位数乘一位数的口算方法: (1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加 (2)在脑中列竖式计算。 2、整百整十数乘一位数的口算方法: (1)先
10、用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。 (2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个 0。 (3)在脑中列竖式计算。 3、一个数与 10相乘的 口算方法: 一位数与 10相乘,就是把这个数的末尾添上一个 0。 4、两位数乘整十数的口算方法: 先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个 O。 小技巧: 口算乘法:整十、整百的数相乘,只需把 0 前面的数字相乘,再看两个因数一共有几个 0,就在结果后面添上几个 0。 如: 30 500=15000 可以这样想, 3 5=15,两个因数一共有 3个 0,在所得结果 15后面添上 3个 0就
11、得到 30 500=15000 笔算乘法 先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐), 最后把两个积加起来。 注意事项 1.估算: 18 22,可以先把因数看成整十、整百的数,再去计算。 (可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。) 2、 有大约字样的一般要估算。 3、 凡是问 够不够,能不能 等的题,都要三大步 : 计算、比较、答题。 别忘了比较这一步。 几个特殊数: 25 4=100 , 125 8=1000 4、 相关公式: 因数因数 = 积 积因数 = 另一个因数 5、两位数乘两位数积可能是( 三 )位数,也可能是( 四
12、)位数。 6、一个两位数与 11 的速算技巧 : 第五单元 面积 面积和面积单位: 1.常用的面积单位有:(平方厘米)、(平方分米)、(平方米)。 2.理解面积的意义和面积单位的意义。 面积: 物体 表面或封闭图形的大小,叫做它们的 面积。 1 平方米:边长是 1 米的正方形,它的面积是 1 平方米。 1 平方分米:边长是 1 分米的正方形,它的面积是 1 平方分米。 1 平方厘米:边长是 1 厘米的正方形,它的面积是 1 平方厘米。 3.在生活中找出接近于 1 平方厘米、 1 平方分米、 1 平方米的例子。 例如 1 平方厘米(指甲盖)、 1 平方分米(电脑光盘或电线插座)、 1 平方米(教
13、室侧面的小展板)。 4区分长度单位和面积单位的不同。 长度单位测量线段的长短,面积单位测量面的大小。 5比较两个图形面积的大小,要用(统一)的面积单位来测量。 背 熟 : ( 1)边长( 1厘米)的正方形,面积是( 1平方厘米)。 (反过来也要会说。面积是 1 平方厘米的正方形,它的边长是 1厘米。) ( 2)边长 ( 1分米)的正方形,面积是( 1平方分米)。 ( 3)边长 ( 1米 )的正方形,面积是( 1平方米)。 ( 4)边长是( 100米)的正方形面积是( 1公顷),也就是( 10000平方米)。 ( 5)边长是( 1千米)的正方形面积是 1平方千米。 面积单位进率和土地面积单位:
14、1.常用的土地面积单位有( 公顷 )和( 平方千米 )。 “ 公顷 ” 测量菜地面积、果园面积、建筑面积 “ 平方千米 ” 测量城市土地面积、国家面积 1 公顷: 边长是 100 米的正方形,它的面积是 1 公顷。 1 平方千米: 边长是 1 千米的正方形,它的面积是 1 平方千米。 1 公顷 =10000 平方米 1 平方千米 =100 公顷 1 平方千米 =1000000 平方米 2.正确理解并熟记相邻的面积单位之间的进率。 进率 100: 1 平方米 = 100 平方分米 1 平方分米 = 100 平方厘米 1 平方千米 = 100 公顷 进率 10000: 1 公顷 = 10000 平
15、方米 1 平方米 = 10000 平方厘米 进率 1000000: 1 平 方千米 = 1000000 平方米 相邻两个 常用的长度单位 之间的进率是( 10 )。 相邻两个 常用的面积单位 之间的进率是( 100 )。 背熟公式 1、周长公式: 长方形的周长 = (长宽) 2 长 = 周长 2宽 或者:(周长长 2) 2= 宽 宽 = 周长 2长 或者:(周长 -宽 2) 2=长 正方形的周长 = 边长 4 正方形的边长 = 周长 4 2、面积公式: 长方形的 面积 =长宽 正方形的 面积 =边长边长 长方形的 周长 =(长 +宽) 2 正方形的 周长 =边长 4 已知面积求长:长 =面积宽
16、 已知面积求边长:边长 =面积开平方 已知周长求长:长 =周长 2 - 宽 已知面积求边长:边长 =面积 4 A、正确区分长方形和正方形的周长和面积的意义,并能正确运用上面的 4 个计算公式求周长和面积。 归类:什么样的问题是求周长? (缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等) 什么样的问题是求面积?或与面积有关? (课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面、某物品占地面积、买玻璃、买镜子、买布、买地毯、铺地、裁手帕的等等) B、长方形或正 方形纸的剪或拼。 有两个或两个以上长方形或正方形拼成新的图形后的面积与周长。 从
17、一个图形中(通常是长方形)剪掉一个图形(最大的正方形等)求剪掉部分的面积或周长、求剩下部分的面积或周长。 要求先画图,再标上所用数据,最后列式计算。 C、刷墙的(有的中间有黑板、窗户等):用大面积小面积。 熟练运用进率进行面积单位之间的换算。掌握换算的方法。 1、低级单位 高级单位: 数量它们间的进率 如:零钱换大钱,张数减少; 300平方分米 3平方米 1、高级单位 低级单位: 数量们间的进率 如:大钱换零钱,张数增多; 5平方千 米 500公顷 注 意: ( 1) 面积相等的两个图形,周长不一定相等。 周长相等的两个图形,面积不一定相等。 ( 2) 大单位换算小单位 (乘它们之间的进率)
18、小单位换算大单位 (除以它们之间的进率) ( 3) 长度单位和面积单位的 单位不同,无法比较。 ( 4) 周长相等 的两个长方形, 面积不 一定相等 。面积相等 的两个长方形, 周长也 不一定相等 。 第六单元 年、月、日 (一)年、月、日 1、常用的时间单位有:(年、月、日)和(时、分、秒)。 2、重要的日子: 1949 年 10 月 1 日,中华人民共和国成立。 1 月 1 日元旦节 、 3 月 12 日植树节, 5 月 1 日劳动节, 6 月 1 日儿童节, 7 月 1 日建党节, 8 月 1 日建军节, 9 月 10 日教师节, 10 月 1 日国庆节 3、熟记每个月的天数: 知道大月
19、一个月有 31 天,小月一个月有 30 天。平年二月28 天,闰年二月 29 天,二月既不是大月也不是小月。一年有 12 个月 ( 7 大 4 小 1特殊) 可借助歌谣记忆: 一、三、五、七、八、十、腊(即十二月), 三十一天永不差。 四六九冬三十天,只有二月二十八。 每逢四年闰一日,一定要在二月加。 4、熟记全年天数: 平年 2 月 28 天,闰年 2 月 29 天。平年 365 天,闰年 366 天。上半年多少 天(平年 181 天,闰年 182 天),下半年多少天(所有年份都是 184 天)。 ( 1)季度 :( 一年分四季度,每 3 个月为一个季度 ) 一、二、三月 是 第一季度 (平
20、年有 90 天,闰年有 91 天), 四、五、六月 是 第二季度(有 91 天), 七、八、九月 是 第三季度( 92 天), 十、十一、十二月 是 第四季度(有 92 天)。 ( 2)会计算每个季度有多少天,连续几个月共有多少天。 连续两个月共 62 天的是:7 月和 8 月, 12 月和第二年的 1 月; 一年中连续两个月共 62 天的是: 7 月和 8 月。 ( 3)给出一个天数会计算有几个星期零几天。 如:第三季 度有( 92)天,有( 13 )个星期零( 1)天。平年全年有( 365)天,是( 52 )个星期零( 1)天。 ( 4)公历年份是 4 的倍数的一般都是闰年: 一般情况下可
21、以用年份除以 4 的方法判断平年闰年。年份除以 4 有余数是平年,没有余数是闰年。 如: 19784=4942 , 1978 年是平年。 19884=497, 1988 年是闰年。 ( 5)公历年份是整百数的必须是 400 的倍数才是闰年。 如 1900 年是平年, 2000 年是闰年。 5、经过的天数的计算: 公式:结束时间 开始时间 + 1 例如: 6 月 12 到 8 月 17 日是多 少天? 6 月 12 日 6 月 30 日 30 12 1 9(天) 7 月有: 31(天) 8 月 1 日 8 月 17 日 有: 17(天) 9 31 17 57(天) 6、给出一个人出生的年份,会计
22、算这个人多少周岁;给出一个人的年龄会计算他是哪一年出生的。 如:小华 1994 年 6 月出生,到今年 6 月( 15 岁)。小华今年 12 岁,他是( 1997年)出生的。 7、通常每 4 年里有( 1 )个闰年, ( 3 )个平年。 (如果说某个人不是每年都能过到生日, 8 岁过两次生日, 12 岁过 3 次生日,那么他的生日就是 2 月 29 日。) 8、推算星期几 的方法 : 例如:已知今天星期三,再过 50 天星期几? 解析:因为一个星期是七天,那么由 50 7=7(星期) 1(天),知道 50 天里有 7 个星期多一天,所以第 50 天是星期三往后数一天,即星期四。 9、会 计算到
23、今年经过的年份: 就用 2013 给的年份 例如: 中华人民共和国成立于 1949 年 10 月 1 日 ,到今年建国多少周年? 熟记中华人民共和国建国的时间是 1949 年 10 月 1 日; 算式: 2013-1949 64(年) (二) 24 计时法 1、 普通计时法又叫 12 时计时法 ,就是把一天分成两个 12 时表示, 普通计时法一定要 加上 “上午 ”、 “下午 ”等前缀。 (如凌晨 3 时、早上 8 时、上午 10 时、下午 2时、晚上 8 时) 2、 24时计时法: 就是把一天分成 24 时表示,在表示的时间前可以加或可以不加表示的大概时间段得词语。 3、普通计时法转换成 2
24、4 时计时法时,超过下午 1 时的时刻用 24 时计时法表示就是把原来的时刻加上 12。 如: 普通计时法 24 时计时法 上午 9 时 = 9 时或 9: 00 晚上 9 时 = 21 时或 21: 00 4、 反过来要把 24时计时法表示的时刻表示成普通计时法的时刻,超过 13时的时刻就减 12,并加上下午,晚上等字在时刻 前面。 比如: 16 时等于 16 - 12 = 下午 4时。(必须加前缀) 5、计算经过时间,就是用结束时刻减开始时刻。 结束时刻 -开始时刻 =时间段(经过时间) 比如: 10:00开始营业, 22:00结束营业, 营业时间为: 22:00 10:00=12(小时)
25、 (计算经过时间时,一定把不同的计时法变成相同的计时法再计算) 比如:某商品早上 8: 00 开始营业,下午 6: 00 停止营业,一天营业多少时间? 下午 6: 00 18: 00 18: 00 8: 00 10(小时) 6、 认识时间与时刻的区别:( 时间是一段, 时刻是一个点 ) 如: 火车 11: 00 出发, 21 时 30 分到达,火车运行时间是( 10 时 30 分),注意不要写成( 10: 30)。 正确的列式格式为: 21 时 30 分 11 时 =10 时 30 分,不能用电子表的形式相减。 再如:火车 19 时出发,第二天 8 时到达,火车运行时间是( 13 小时)。像这
26、种跨越两天的,可以先计算第一天行驶了多长时间: 24-19=5(时),再加上第二天行驶的 8 个小时: 5+8=13(时) 又如:一场球赛,从 19时 30分开始,进行了 155 分钟,比赛什么时候结束?先换算, 155 分 2时 35 分,再计算。 7、会根据 给出的信息制作月历和年历。 如:某年 8 月 1 日是星期二,制作 8 月份的月历。再如:某年 4 月 30 日是星期 四,制作 5 月份月历。 制作年历步骤: 第一:确定 1 月 1 日是星期几; 第二:确定 12 个月怎样排列, 第三:把休息日用另外的颜色标出来。 8、时间单位进率: 1世纪 =100年 1年 =12个月 1天(日
27、) =24小时 1小时 =60分钟 1分钟 =60秒钟 1周 7天 第七单元 小数的初步认识 1、 小数的意义: 像 3.45,0.85,2.60,36.6,1.2和 1.5这样的数叫做 小数 。小数是分数的另一种表现形式。 2、小数的认、读、写: 限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分每一位都要读,按读电话号码的方法读,有几个 0就读几个零。 例如: 127.005读作:一百二十七点零零五。 3、小数与分数的关系、互换。 小数不同表示的分数就不同。 例如: 0.5 5/10 0.50 50/100 4、运用元 /角 /分、米 /分米 /厘米的知识写小数;
28、把 7角、 7分改写成以元作单位的小数。 5、把“单位 1”平均分成 10份,每份是它的十分之一,也就是 0.1 把“单位 1”平均分成 100份,每份是它的百 分之一,也就是 0.01 6、 分母是 10的分数写成一位小数( 0.1), 分母是 100的分数写成两位小数( 0.01)。 7、比较两个小数的大小 :先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。 8、比大小的两种情况: 跑步是 数越少越好 ;跳远、跳高是数越大越好。 9、计算小数加、减法时, 小数点对齐,也就是相同数位对齐,再相加、减。 10、小数加减法计算:。 (尤其注意: 12 3.9; 9 8.3 等题的计算。) 11、小数不一定比 整数小。 (如: 5.1 5 ; 1.3 1等) 第八单元 数学广角 -搭配(二) 简单的排列: 有序排列才能做到不重复、不遗漏。 简单的组合: 组合问题可以用连线的方法来解决。 组合与排列的区别: 排列与事物的顺序有关,而组合与事物的顺序无关。