1.已知椭圆 (ab 0) ,O 为21xya坐标原点,P、Q 为椭圆上两动点,且 .则O(1) ;22211|OPQab(2)|OP|2+|OQ|2的最大值为 ;24ab(3) OPQS的最小值是 .2ab圆锥曲线性质对比椭圆 双曲线焦点三角形面积 122tanFPSb12/tan2FPSb两斜率乘积定值AB 是椭圆 的2xy不平行于对称轴的弦,M 为 AB),(0yx的中点,则,即2OMABbka02yxKAB 是双曲线(a0,b21xyb0)的不平行于对称轴的弦,M为 AB 的中点,),(0yx则 ,即02yaxbKABOM。02ABAB 是椭圆 的21xyab过原点的弦,M为椭圆上任一),(0yx个点(不同于 AB) ,则 ,即2MABbkaAB 是双曲线(a0,b21xyb0)过原点的弦,M 为双曲线),(0yx上任一个点(不同于 AB) ,则2MABbka圆锥曲线过切点的切线方程