1、cI|:1673-0291(2011)05-0119-05 q 0 =E+郭宏榆, 姜久春,王吉松,娄婷婷,李肖刚(Yv ,100044)K 1:为了深入分析功率型锂离子电池的内阻特性及影响因素之间的关系,本文利用混合脉冲功率特性测试方法(Hybrid Pulse Pow er Characterization, HPPC)测试锂离子电池在不同温度环境、荷电状态(Stage of Charge, SOC)下的内阻变化规律,实验结果表明锂离子电池内阻在低温环境和较低SOC 下变化明显.最后利用多项式最小二乘法拟合得到锂离子电池内阻与环境温度之间的关系表达式,为下一步实现电池功率在线预测提供了数据
2、支持和理论基础.1oM:功率型电池;内阻特性;HPPC 方法;曲线拟合ms |:TM 912.4 DS :ACharacteristic on internal resistance of lithium-ion power batteryGUO Hongyu, JIANGJiuchun, WANGJisong, LOU Tingting,LI Xiaogang(School of Electrical Engineering,Beijing Jiaotong University, Beijing 100044, China)Abstract:For in-depth analysis in
3、ternal resistance of power lithium-ion battery and the relationship be-tween factors, hybrid pulse power characterization(HPPC)method is used for testing internal resis-tance of lithium-ion battery under the different temperatures and the stage of charge(SOC)in this pa-per.The results show that the
4、power lithium-ion internal resistance has changed significantly at lowtemperature and SOC.Finally , the relationship expression between the power lithium-ion battery in-ternal resistance and the temperature w as proposed by polynomial least square curve fitting, it providesa theoretical basis and da
5、ta support for the battery pow er online prediction.Key words:pow er battery;internal resistance characteristic;hybrid pulse pow er characterization(HP-PC)method;curve fittingl :2011-02-20 “:SE“863”9 “(2007AA11A103)Te:R(1983), 3, _ # kZE、 SFreedomCAR “ q k m3, =E k4 8ZE. q+ kZE(Hybrid Pulse Pow er C
6、haracterization, HP-PC) V k b =E, kZEe y, ZE A 4-6 .HPPCZE PBFb 3 9 b (Depth of Discharge,DOD)/b 3 =E, SB T9(Partnership for New Generation of Vehi-cles,PNGV), k m?b HW18s, 3 2 s;FreedomCARM|b# 3HWdB10 s, L. PkT V H9 #“d V ? V q,# x =E =ESOCf 1“, b、 3f /Y HW .HPPC kZE I n !9 bV qY, =r Ve B XE1 ,nm1.
7、m1 HPPCer Fig.1 HPPC simplified equivalent circuitFk8 /1“ Tuk(t)=OCV(Zk(t)-R ik(t) (1)OCV(Zk(t)k8 - / 7(Open Circuit Voltage, OCV),Rik(t)sYN H =E , =Eb =EsYRchgRdisV U;m2 U,HP-PC kZE bZE 9 b =E =E. b =E9 Vr TRdis =UI =uk(t0)-uk(t1)i(t1)-i(t0)(2)“, =EVr TRchg =UI =uk(t3)-uk(t2)i(t3)-i(t2) (3)m2 HPPC
8、k wLFig.2 HPPC pulse test curveT /Kuminuk(t)umax , * V9 Kvb idismax,k =OCV(zk(t)-uminRdis(4)“, Kv ichgmax,k =umax -OCV(zk(t)Rchg (5)yN, Vw8 bKv qPchgmax =umax ichgm ax,k (6)Pdismax =umin idismax,k (7)8 ,YVHPPCZE 7ZB“ k k, V 0 / =E q.2 L! L “S = E 3q ,W% V1 .V1 q 0 !9 Tab.1 Design parameters of lithi
9、um-ion pow er battery “ - /Ah 8S/V 3.6? /(Wh/kg) 100b q /(W/kg) 2 500(50%SOC, 10 s) q /(W/kg) 2 700(50%SOC, 10 s)PS/ -20 55 1b q5%(100%SOC, 28 days) p 2 000Q(1C Rate) /g 290LS 5 C /EVT300 A-120 Y v 35 500 V-80 kW k“d, S:-300300 A/DC; S:0 500 V/DC. ! *DLS-CAN-31-1 “d#BTS-600 S e q, V LC k ! eI,i V L
10、H : ck . k/ =EM f, L i r 3SDJ-F“ M A kQ, V-70 100 S = 2Q =, k4 A. =9 ?r !, Qk 7 S -| !2 h.3 0 =E+s3.1 =EBs rB、 q ? ), L=1,11 F P.m3 B111F 8/=Es f .m3 8 =EsFig.3 Internal resistance distribution of different cellsVm3 V A,Hq/,Q LF =EB z,BH L , -20 Hq/F =EsKv,9 /o5% =,2.5 m =. f /, Ve 8 =E+ VVF =E+,yN
11、= |8Z 7.3.2 / =E 0 M| A ? # 0 iM,yN) H, =E9Cs. / =E,sY/SOC,10%SOCBW, 0HPPC b L,: c8Q T/ M,i9 N H =E.m4/ =E# 2 SOCM wL.N) 2 lSOCM1% H =EM,m.m4 =E- wLFig.4 Internal resistance-SOC curveVm4 Vs,SOC)0,30%uW H, =E/ t y;7SOCv30% H, =E 2 “SOC9v7v,2 l0.04 m.N V, s =EY, 0SOCuW(0,30%) q+ . 0SOC1 p e30%80%W, sT
12、M1,?CSOCT uW = =E SOCM ,N V SOCM =EY./SOCM =EY ,m5sY1 0 、10 、2050 / =E SOCM+.?CSOC30% 80%T uW =,Hq/, =E SOCM , Vv/sT, uW = =EM ) .m5 / =E- wLFig.5 Internal resistance-SOC curveat different temperatures3.3 / =E k Y =EM 6B1oy ,3.2 VSOC30%80%T uW =, =ESOCM V 9,yN, |SOC50%Hq/TV, k =EY./TY P p , BypT-25
13、50 W,yN,S = =E k. m6 U, =E1215 R: q 0 =E+AQ11“,/ =E 6,i OCdL+.V2m6M V.N) 2 lM1 H =EM,m.m6 / =E wLFig.6 Internal resistance curve at different temperaturesV2 / =E# 2 Tab.2 Internal resistance and sensitivityat different temperatures/ =E/m 2 /m-20 94.841 -10 43.170 5.1670 21.858 2.13110 10.812 1.10520
14、 6.754 0.40630 4.403 0.23540 3.471 0.09350 2.680 0.079V A,3.2M1, =E M 2 A , P50 /, 2 r0.079 m,7m4 V, =ESOCTuW(30%,80%) =M 2 (l0.04 m. Vn, =E M 2 V=E SOCM 2 2,yN,Y =E1oy ,7M1, V SOC =EY.4 =E wL T E -s V, 0 =EM1 /. =EW1“CdL+, =EW1“,Kl=E| 0 =E wLQ E.4.1 Kl=E wL Ef KD Z/f(x)C a,b , Tf(x)BF “xi,i=0,1,m ,
15、 S Ln L (xi,yi),i=0,1,m wL E, yi =f(xi),i=0,1,m,1 pBf y=S(x) (xi,yi),i=0,1,m E, :i =S(xi)-yi,i =0,1,m,=(0,1,m)T ,!0(x),1(x),n(x) C a,b L1f B,=span0(x),1(x),n(x),sBf S(x), P ZKl.22 =mi=02i =mi=0 S(xi)-yi2 =minS(x)mi=0 S(xi)-yi 2 (8)S(x)=a00(x)+a11(x)+ann(x),(nm). BKl=/,+ , wL EKl=E.Kl=E p EwL S(x) TV
16、.YVf(x) (xi,yi),i=0,1,m 4 T,B V |=span1,x,xn,K p T a0,a1, ,anV, m pEZ9 dv,7Matlab q4 B wL E Q(Curve Fitting Toolbox), Q oZ V pKl=, LCdLKl=E E7-9 .4.2 ET | 0 =E/ L ,YV TKl=E E, Q E wLs f m78 U.m7 Q =E- E wLFig.7 Internal resistance-temperaturefitting curve of different ordersYV T ET V A,1#2 T Ei v, ?
17、TS =Q =EM,74 T E uWS =dl, uW =, V 1 p.yN | TT 0 =E E wL, EZ /Ri =-0.0017T +0.0702T 2 -1.5181T3 +20.3732T 4.122 Y v 35 m8 Q EsFig.8 Error distribution of different orders5 1)YVs1 F8 =Esf , Ve 8 =E+ VVF =E+.2) 0SOC1p e30% 80%W,SOCT uW = =E SOCM ,N V SOCM =EY;3) 0 =E M 2 ,O AQ1dL1“.4) =E+ L ,YVKl=E wL
18、E =E1“Vr T,ETV T VQ =EW1“.5) “ |, =Ev9v, ?9 /, q ?. HW LHq1“, V=EM L,| p | =EM1“ s. ID(References): 1, + . 0 =EO M# p 9 J ./ ,2009,33(3):217-220.WEI Xuezhe, XU W ei, SHEN Dan.Internal resistanceidentification of Li-ion battery and its application in batterylife J .Chinese Journal of Power Sources, 2
19、009, 33(3):217-220.(in Chinese)2u ,0,. q _ =E kZE J . 8, 2010,19(1):57-61.ZHAO Shuhong, WU Feng, WANG Zidong, et al.Studyon power battery internal resistance measurement methods J .M ining &M etallurgy, 2010,19(1):57-61.(in Chi-nese)3 Dept U S.Energy, Idaho Nat Eng Environ Lab.PNGVBattery Test M anu
20、al R.Rev.3, DOE/ID-10 597,2001.4 Plett G L.High-performance battery-pack power estimationusing a dynamic cell model J .IEEE Transactions on Ve-hicular Technology, 2004, 53(5):1586-1593.5 Lukic S M, Cao J, Bansal R C,et al.Energy storage sys-tems for automotive applications J .IEEE Transactions onInd
21、ustrial Electronics,2008,55(6):2258-2267.6 Z,j, .HEV q kZE J ./ , 2009,33(3):210-212.LI Fang, YANG Yifu, YANG Lihua.Study on outputpower testing method of HEV batteries J.Chinese Jour-nal of Power Sources,2009, 33(3):210-212.(in Chinese)7 i, ?,vl. s M .4.: bv, 2001:61-117.LI Qingyang, WANG Nengchao,
22、 YI Dayi.Numericalanalysis M .4th ed.Beijing:Tsinghua University Press,2001:61-117.(in Chinese)8 |, ,!,.Kl=EL9 J ./ , 2010,34(10):1056-1059.LI Kuangcheng, YANG Yali, CHEN Tao,et al.Determi-nation of battery SOC on-line based on least squares analysis J .Chinese Journal of Power Sources, 2010, 34(10):1056-1059.(in Chinese)9 M athw orks Curve Fitting Guide.M athw orks Tech-Note1508 EB/OL.http:/www .mathw 2004.1235 R: q 0 =E+