收藏 分享(赏)

第5章 大体积混凝土.doc

上传人:精品资料 文档编号:8785051 上传时间:2019-07-11 格式:DOC 页数:11 大小:177KB
下载 相关 举报
第5章 大体积混凝土.doc_第1页
第1页 / 共11页
第5章 大体积混凝土.doc_第2页
第2页 / 共11页
第5章 大体积混凝土.doc_第3页
第3页 / 共11页
第5章 大体积混凝土.doc_第4页
第4页 / 共11页
第5章 大体积混凝土.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、第 5 章 大体积混凝土一、大体积混凝土的定义在工程实践中常遇到大体积混凝土结构,如大型设备基础、高层建筑基础底板、构筑物基础、桥梁墩台、深梁、水电站坝等。由于这些结构体积大、整体行要求高,往往不宜留置施工缝。此外,水泥水化时放出大量热量,当结构体积大时,混凝土内部聚集的热量长期不易散失,混凝土内部和周围大气环境间形成较高温度差,由于温度应力常造成混凝土开裂。因此,美国混凝土学会曾强调指出:“任何就地浇筑的大体积混凝土,必须要求采取措施,解决水化热及随之引起的体积变形问题。以最大的限度减少开裂。”综述所述,应十分慎重组织大体积混凝土的施工,以防止出现质量事故。对于大体积混凝土的定义有不同的解释

2、,日本建筑学会标准(JASS5)的定义:“结构断面最小尺寸在 800mm 以上,水化热引起混凝土内的最高温度与外界气温之差超过 25C 的混凝土,称为大体积混凝土。” 我国某施工单位制定的“大体积混凝土工法”中认为:凡结构断面最小尺寸大于 3000mm 的混凝土块体;或者单面散热的结构断面的最小尺寸在 750mm 以上,双面散热在 1000mm 以上,水化热引起的最高温度与外界气温之差预计超过 25C 的混凝土,均可称为大体积混凝土。总之大体积混凝土还没有一个统一的定义。但是用结构尺寸大小来定义大体积混凝土结构过于机械,有些结构的尺寸并不很大(如某些地铁隧道底板厚度仅 0.5m)但受到外界约束

3、很大,也避免不了出现裂缝。采用以上定义方法有可能对某些本应属于大体积的混凝土结构忽略了对施工的预控。至于用混凝土结构可能出现的最高温度于外界气温之差的某一规定值来定义大体积混凝土也不够严密。因为“温度差” 只有在约束条件下才起作用。当内外约束(限制)较小时,就可允许混凝土和外界温度差较大,反之较小。我国有关设计规范中曾规定,当基础混凝土 28d 龄期的极限拉伸值不低于 0.8510-4 时,施工质量均匀、良好,短间歇均匀上升的浇筑块、基础的容许温度差一般按 表 5-1 该规定中考虑了约束条件及混凝土的抗拉能力,从而规定容许温差,是较科学的。二、大体积混凝土的温度及湿度变形温度变形产生的原因很多

4、,在这里仅讨论由于温度和湿度变化而产生的混凝土的变形。当升温时或混凝土吸湿时体积膨胀,当降温时或混凝土失水时,体积收缩。随着有无限制条件,混凝土的膨胀及收缩变形产生不同的结果。1限制条件的影响(1)限制条件根据有无限制条件混凝土的收缩可分为自有收缩及限制收缩,膨胀可分为自由膨胀和限制膨胀。但是,可以认为任何混凝土变形都受到程度不同的限制,几乎没有不受限制的自由变形。大体积混凝土所受到的内外限制见下图(2)限制条件的影响自由收缩不会影响混凝土开裂,但限制收缩达到某种程度时可能引起开裂。反之自由膨胀引起开裂而限制膨胀不发生开裂。例如:1)小尺寸的板、块、杆当不配筋或只配少量钢筋又无其他限制时,收缩

5、再大也不会开裂。2)配有较多粗钢筋的梁、大尺寸板,基础嵌固很牢的底板或路面,大体积混凝土的表层等在干燥或剧烈降温时,产生较大的限制收缩,引起混凝土的开裂。3)小尺寸的混凝土梁、板、块以及较小尺寸结构的钢筋保护层部分,变形不受限制,当受到某些因素作用产生过大膨胀变形时,有可能开裂或产生表面裂缝。4)当大体积混凝土中配筋适度,或受到周围老混凝土有效限制,甚至有坚固模板的限制时,膨胀变形不但不会引起开裂,还能得到质地致密、抗渗性好、强度较高的混凝土。(3)相向变形和背向变形相向变形使混凝土质点的间距缩小,组织致密,自由收缩是相向变形。背向变形使混凝土质点间距较大,组织变松,自由膨胀是背向变形,膨胀超

6、过一定限度就会开裂。而限制下的收缩和膨胀同时包含相向及背向两种变形 (图 5-2)。可将限制膨胀分解为两部分变形:一是假定未受到限制,质点间距从原长 l1 增加到不受限制时能达到的长度 l2 也就是自由膨胀的全部变形,这部分是背向变形;另一是因限制作用使质点间距从上面达到的长度 l2 减小到限制后实际达到的长度l3,这部分是相向变形。当限制程度足够大时,非但使混凝土避免开裂,并能起增强和密实的好作用。限制收缩也可分两个部分的变形:一是假定未受到限制,质点间距从原长 l1 减小到不受限制时能达到的长度 l2,即自由收缩的全部变形,这部分是相向变形;另一是因限制作用使质点间距从上面达到的长度 l2

7、 加大到限制后实际达到的长度 l3,这部分是背向变形。当限制程度很大时,这部分背向变形会引起开裂。2混凝土的湿度变形(干缩及湿胀) 混凝土中水分存在于孔隙中,这些孔隙分布在水泥石、骨料及骨料与水泥石之间和钢筋与水泥石之间的交界处。孔隙分胶孔、毛细孔、气孔。气孔(直径在 1mm到 0.01mm 之间)中存在自由水,其增减不引起混凝土体积变化。毛细孔尺寸比气孔小 100 倍,其中存在着受毛细管力作用的可蒸发水,此种水分蒸发将引起体积收缩,胶孔比毛细孔小 1000 倍,即约为 1040A(埃)(1A 10)约为水分子直径的 5 倍。胶孔中经常充满着水、不易蒸发。但胶孔水仍对混凝土大体积变化有重要影响

8、。(1)干缩机理 T.C.Powers 对干缩机理提出如下假设:当水分进入干燥的凝胶孔时,吸附水被均匀分布到固体颗粒全部表面。当相对湿度达到 100时或在水中时,固体颗粒表面吸附水层厚度可达 5 个水分子直径,即两个粒子间需有 10 个水分子直径的间距,但胶孔平均尺寸只约 5 个水分子直径,容纳不下 10 个水分子直径厚度的吸附水,因此产生吸附水对粒子的推力。此推力大小随环境湿度而变。当相对湿度达到100时推力最大,体积膨胀,即湿胀现象。当湿度降低,推力减小,毛细孔水也开始蒸发,在毛细孔中产生拉应力,相应的在固体结构中产生压应力。随着推力减小与压应力增加,体积就收缩。毛细孔含量愈多,周围的压应

9、力就愈大,收缩率也愈大。当环境相对湿度降低到 40以下时,固体颗粒表面吸附水膜的厚度不足两个水分子直径,胶孔中就不饱含水分,就不产生推力,体积收缩就更加剧烈。 在砂浆和混凝土中骨料起着阻止水泥石收缩的作用,混凝土的收缩率只是水泥石的 1/10。(2)影响干缩率的因素 1)骨料:骨料在混凝土中含量以及骨料的弹性模量对干缩率有重要影响。骨料尺寸及级配影响不大。 2)存放条件(环境湿度)对干缩率有重要影响。延长湿养时间可推迟干缩的发生与发展,但对最终的干缩率并无显著影响。 3)水灰比与加水量:水灰比及加水量大时干缩率大。 4)尺寸形状:试件(构件)尺寸增加,则干缩率减小。用体积与表面积的比值来表示试

10、件的形状特征,比值小时则干缩率大。但有一定限度。3混凝土的温度组成在绝热条件下,混凝土的最高温度是浇注温度与水泥水化热产生的绝热温升的总和。但实际上由于混凝土与外界环境之间存在温差,而结构物四周又不可能做到完全绝热,故新浇注的混凝土必然向外散热。结构物的模板、外界气候条件(温度、湿度、风速)和养护条件等因素都会促使混凝土的温度发生变化。因此混凝土内部温度实际上由以上两种温度组成部分再加上混凝土浇注后的散热温度所组成。 另外,混凝土从浇筑成型后,经历着初始温度发展为最高温度,最后达到稳定温度(或称最终温度)这样一个变化过程。大体积混凝土在进行温度控制和温度应力计算时,就必须了解它的温度组成及其变

11、化规律。三、混凝土的温度应力 (一)混凝土的徐变及应力松弛 1混凝土的徐变 在一定荷载长期作用下,混凝土将产生随着时间而增加的塑性变形,称为混凝土的徐变。徐变对混凝土的结构的应力及变形状态有较大影响。对于大体积混凝土来说,徐变变形与收缩(膨胀)变形同时存在、关系密切。 (1)徐变机理 一般认为混凝土产生徐变的机理是由于水泥石的粘弹性和水泥石与骨料之间塑性性质的综合结果。具体来说主要由于持续荷载作用使凝胶体中水分缓慢压出,水泥石的粘性流动,微细空隙的闭合,结晶内部的滑动,微细裂缝的发生等因素的累加。 影响徐变的主要因素是: 1)加荷期间大气湿度越低,气温越高,徐变越大; 2)混凝土中水泥用量越多

12、或水灰比越大,徐变越大;混凝土强度越高,弹性模量越大,徐变越小; 3)骨料的级配不良,空隙较多,徐变较大; 4)水泥活性低,结晶体形成慢而少,徐变较大; 5)加荷应力越大,徐变越大;6)加荷时混凝土龄期越短,徐变越大;持续加荷时间越长,徐变越大;7)结构尺寸越小,徐变越大;(2)徐变的表示方式一般以徐变系数 来表示, =f/ (5-20)式中 f混凝土的徐变变形; 混凝土的弹性变形;对于普通混凝土如取徐变变形最终值 f=7610-5,弹性变形值 =3310-5;=2.3。(3)大体积混凝土的徐变在大体积混凝土生温阶段,混凝土内部因膨胀而引起相向变形(属于限制条件下的膨胀),但此时结构发育得还不

13、够,塑性还较大。这种相向变形大部分为塑性变形荷徐变所消耗。因此限制膨胀所引起的混凝土密实作用,由于徐变而大大削弱。降温阶段由于限制收缩而在混凝土中出现一定的拉应力,拉力徐变随之产生,它能增加混凝土的拉伸变形能力,有时能使混凝土的极限延伸率提高 1-2 倍或更多,推迟或避免开裂。所以徐变对于防止大体积混凝土开裂有利。但是此时混凝土内部结构随断裂而发展,强度及弹性模量上升,而塑性减少,徐变也随之减少。因此,收缩所产生的拉应力发展到一定程度仍能引起混凝土开裂。2应力松弛混凝土结构载荷载作用下,如保持约束变形为常量,则结构约束应力将随时间逐渐减少,此现象称为应力松弛。它是由于混凝土的徐变特性引起的。在

14、变形为常量的条件下,任意时刻应力与初始应力之比称为应力松弛系数。由于松弛实验较费事,一般根据在常荷载作用下的徐变资料得到应力松弛系数。混凝土松弛程度与外加荷载时混凝土的龄期有关。时间越早,混凝土徐变引起的松弛可越大,其次同应力作用的长短时间有关,时间越长,则松弛也越大。混凝土结构浇注 20 天后已够成熟,产生约束变形。此时龄期的影响很小,可忽略不计,应力松弛系数 S(t) 只与发生的约束变形后荷载持续时间 t 有关,可按表5-8 取值。考虑荷载持续时间影响的松弛系数 S(t) 表 5-8时间(d) 3 6 9 12 15 18 21 24 27 30S ( t) 0.1860.2080.212

15、0.2150.2300.2520.3010.3670.4731.00所以,考虑徐变的计算就简化为按常规算出的弹性应力再乘以应力松弛系数。这种计算方法对工民建中各种低配筋率的构筑物是可行的,计算是简便的。(二)大体积混凝土在温度应力作用下的两种不利情况1产生表面裂缝大体积混凝土浇注后一段时间,内部水化热不易散失,外部混凝土散热较快,水化热温升随壁(板)厚度增加而加大,混凝土内外形成一定的温度梯度。无论温升阶段或温降阶段,混凝土中心温度总是高于混凝土表面温度。根据热胀冷缩原理,中心部分混凝土膨胀速率要比表面混凝土大。因此,混凝土中心与表面各质点间的内约束以及来自地基及其他外部边界约束的共同作用,使

16、混凝土内部产生压应力,混凝土表面产生拉应力。当温度梯度大到一定程度时,表面拉应力 (t)超过混凝土的极限抗拉强度 Rf(t)时,混凝土表面产生裂缝。在升温阶段,混凝土未充分硬化,弹性模量小,徐变影响较大。因此拉应力较小,只引起混凝土表面裂缝。2产生贯穿裂缝随着水泥水化反应的结束及混凝土的不断散热,大体积混凝土由升温阶段过渡到降温阶段。温度降低,混凝土体积收缩。由于混凝土内部热量是通过表面向外散发,降温阶段混凝土中心部分与表面部分的冷缩程度不同,在混凝土内部产生较大的内约束,同时地基与边界条件也对收缩的混凝土产生较大外约束。内外约束的作用,使收缩的混凝土产生拉应力,随混凝土的龄期增长,抗拉强度

17、Rf(t )增大。弹性模量 E( t)增高,徐变影响减小。因此降温收缩产生的拉应力 (t )较大,易在混凝土中心部位形成较高拉应力区,若此时的混凝土拉应力 (t)大于混凝土此龄期的抗拉强度 Rf(t),则大体积混凝土产生贯穿裂缝。大体积混凝土从浇筑到达到设计强度 R(通常取 R28)为止,混凝土的抗拉强度 Rf 与引起混凝土开裂的温度应力 2 是以时间 t 为自变量的函数,即 Rf (t )、2( t)。当温度应力 2(t)大于混凝土此龄期的抗拉强度 Rf (t ),则混凝土产生裂缝,裂缝出现在 2( t) R f(t)的受拉混凝土处。如果通过合理措施控制混凝土拉应力 1(t)一直小于混凝土该

18、龄期抗拉强度Rf(t ),就能保证混凝土不会产生温度裂缝。 见图 5-34按裂缝宽度划分:分为微观裂缝和宏观裂缝。微观裂缝也称为“肉眼看不见的裂缝” 。裂缝宽度在0.020.05mm 以内,所以取 0.05mm 为宏观裂缝的起始宽度,裂缝宽度指一条裂缝中较宽区段地平均值。宏观裂缝可以避免,但不是所有的宏观裂缝都是有害的。从国内外试验资料分析,结构物裂缝宽度一般控制在如下范围:(1)无侵蚀介质,无抗渗要求 0.3mm(2)轻微侵蚀介质,无抗渗要求 0.2mm(3)严重侵蚀介质,有抗渗要求 0.1mm四、大体积混凝土结构裂缝控制的综合措施(一)降低浇注温度及硬化过程中的混凝土温度1混凝土原材料的预

19、冷却 混凝土原材料的预冷却,不仅可以降低混凝土的浇注温度,而且还可削减混凝土内部的最高温度,并减少最高温度与稳定温度之间的差值,从而把混凝土内的温度变化控制在允许范围之内,以防止裂缝的产生。(1)冷却搅和水或掺冰屑在暑期施工中,一般采用冷却拌和水或掺冰屑的办法,达到降低混凝土拌和温度的目的。在拌和水中加冰,必须使冰在拌和过程中完全融化,否则,待混凝土浇筑后冰屑融化,在混凝土中形成空洞,影响混凝土的质量。(2)预冷骨料当混凝土体积特大或气温很高时,单靠冷却拌和水法往往满足不了要求,故还需与预冷骨料配合使用,预冷骨料通常有湿法、干法与真空气法三种。1)浸水法 粗骨料的预冷最常用的是浸水法,既把骨料

20、放在 12的冷水中进行冷却。故其方法是建一些大容积的料仓(称为冷却塔),内装约 1/3 的冷冻水,用进料皮带机将骨料送入仓内,直到装满为止,然后不断通入冷冻水,循环至预定时间内停止进水,排去仓内水,最后将骨料卸入出料皮带机,运送至搅拌站的石子料仓内。这种方法冷却效果好,工艺流程简单,但需要大量的冷却设备。2)喷水法 骨料在运输过程中,在指定地点装设喷水管,沿途喷洒冷水。这种方法冷却效果不好,耗水多,经济效益差。干法冷却是用冷空气对骨料进行吹风冷却,亦有两种方式:一种方式是在搅拌楼的骨料仓内进行冷却。此时需将料仓封闭,由通风系统通入冷风。为了达到预定冷却效果,骨料需在仓内滞留一定的时间。另一种方

21、式是在运送过程中用冷风使骨料冷却。此时,沿输送骨料的皮带机应设冷风道、冷气供风管及回风管。冷风还需有足够的长度。3)真空气法是利用在骨料中水分蒸发、吸热而冷却骨料。冷却时,将骨料装满在封闭的料仓中,抽出几乎所有的空气。然后将真空保持一定的时间。2低水泥水化热(1)水泥的选用应优先采用水化热低的矿渣水泥配制大体积混凝土,当混凝土的强度等级为C15 时,可采用 325 号矿渣硅酸盐水泥,当混凝土强度等级为 C20 或 C20 以上时,宜采用 425 号的矿渣硅酸盐水泥;也可用 525 号水泥,但注意用量。对大体积混凝土所用的水泥,应进行水化热测定,水泥水化热的测定按现行国家标准水泥水化热试验方法(

22、直接法)进行,配制混凝土所用水泥 7 天的水化热宜不大于 250kj/kg。(2)混凝土强度选用避免用高强混凝,尽可能选用中低强度混凝土,基础混凝土的强度等级宜在C25 C35 的范围选用,利用后期强度 R60。(3)大体积混凝土配合比的选择在满足设计要求及施工工艺要求的前提下,应尽量减少水泥用量,以降低混凝土的绝热温升。1)采用减水剂、减少用水量及水泥用量;2)合理选择骨料粒径及级配、沙率,以在保证混合物和易性的原则下尽可能减少用水量以降低水泥用量。3)采用优质粉煤灰等活性掺和料取代水泥用量;改善混合物和易性,可减少用水量,提高混凝土结构的后期强度及耐久性。3降低核心部分混凝土温度浇注混凝土

23、时预埋钢管,混凝土硬化过程中向钢管内通入冷水,以降低核心部分混凝土温度。(二)提高混凝土极限抗拉强度1选择良好级配的粗骨料,严格控制其含泥量不大于 1.5。2加强混凝土的振捣,采用二次投料法及二次振捣法,加强早期养护,并在浇注后及时排除表面积水以提高混凝土湿度和早期龄期抗拉强度,减少收缩变形。3在大体积混凝土内设置必要的温度配筋(采用小直径、密间距)。在应力集中处如界面突变或转折处,底板(顶板)与墙转折处,孔洞转角及周边,增加斜向构造配筋,以防止出现裂缝。三)改善约束条件,削减温度应力1采取分层或分块浇筑大体积混凝土,合理设置水平或垂直施工缝,或在适当的位置设置施工后浇带,以放松约束程度,并减

24、少每次浇筑长度的蓄热量,以防止水化热的积聚,减少温度应力。2对大体积混凝土基础与岩石地基,或基础与厚大的混凝土垫层之间设置滑动层,如采用平面浇沥青胶铺砂或刷热沥青或铺卷材。在垂直面、键槽部位设置缓冲层,可用铺设 3050mm 厚沥青木丝板或聚苯乙烯泡沫塑料,以消除嵌固作用,释放约束应力。3采用合理的平面和里面设计。避免截面突变,从而减小约束应力。(四)加强施工中的温度控制1在大体积混凝土工程施工前,应对施工阶段大体积混凝土浇注的温度、温度应力及收缩应力进行验算,确定施工阶段大体积浇注块体的升温峰值、里外温差及降温速度的控制指标及制定温控施工技术措施。温度控制应围绕如何防止因温度变形而引起的结构

25、物开裂为核心。温度控制的目的,就是要对混凝土的初始温度(浇筑温度),和混凝土内部的最高温度进行人为的控制。温度控制措施必须建立在严密的科学基础上。不但要有温度控制的要求,而且还应计算出各龄期混凝土内的温度应力。只有采取温度及应力“双控制”的方法,才能最大限度地避免结构物出现开裂的情况。2合理安排施工程序,控制混凝土浇注面在浇筑过程中均匀上升,避免混凝土拌合物堆积高差过大。在结构完成后及时间回填土,避免其侧面长期暴露。3加强测温和温度监测与管理,实行信息化控制,随时控制混凝土内的温度变化,混凝土的中心温度与表面温度之间的差值(T max Tb),基底面温差以及混凝土表面温度与室外空气中最低温度之

26、间的差值(T b Tq),均应小于 20C;经过计算确认结构物混凝土具有足够的抗裂能力时,允许不大于 2530C。及时调整保温及养护措施,使混凝土的温度梯度和温度不至过大,以有效控制有害裂缝的出现。4规定合理的拆模时间,拆模时间应考虑气温环境等情况,必须有利于温度控制,即拆模后混凝土的温差不能太大,拆模后及时回填土5混凝土浇筑后,做好表面的长时间保温保湿养护,延缓降温时间和速度,以充分发挥混凝土的“应力松弛效应 ”,以减低温度应力。夏季及常温应在浇筑后及时洒水养护,以保持混凝土表面经常湿润为原则,模板上亦应经常洒水。夏季应避免曝晒,注意保温。冬季应采取措施保温覆盖,以免发生急剧的温度梯度。当气

27、温骤降,为防止表面散热过快,内外温差过大,可用碘钨灯或其他加热装置加热表面。混凝土的养护时间,应根据水泥品种而定(见表 5-10)。利用后期强度的混凝土,以及在干燥、炎热气候条件下,应延长养护时间,至少养护 28 天,对裂缝有严格要求时,应再适当延长。大体积混凝土养护时间 表 5-10水 泥 品 种养护时间(d)普硅水泥 14火山灰质水泥、矿渣水泥、大坝水泥、矿渣大坝水泥21在现场掺用混合材料的水泥 21五)混凝土混合物中掺入膨胀剂混凝土混合物中掺入膨胀剂,为大体积混凝土的施工开辟了一个崭新的领域。膨胀剂在混凝土内部产生的膨胀受到内部限制(包括混凝土本身及钢筋的限制)。因此是限制膨胀。在正确使

28、用膨胀剂及掺量正确的前提下,膨胀剂的微膨胀作用可部分地抵消大体积混凝土的限制收缩,从而防止或减少收缩裂缝。因此掺膨胀剂的混凝土称为补偿收缩混凝土。采用掺入膨胀剂的措施来防止大体积混凝土的开裂,相对来说比其他措施较简便、较经济。在二十世纪八十年代邯郸钢铁厂中柱四辊主轧机基础是长 27.2M 宽16.9M 深 10.1512.15M 的大体积混凝土结构,混凝土体积约 4500M3。在研究防止大体积混凝土施工时开裂措施方案时,技术经济分析表明掺膨胀剂并保温的方案的费用为 73 万元,冰水搅拌混凝土并埋钢管通水及保温的方案需费用 210 万元。五、大体积混凝土施工有关大体积混凝土施工的主要问题已在上节

29、阐明。本节仅补充说明两个问题。(一)保证大体积混凝土连续浇筑的措施大体积混凝土施工的另一特点是整体性要求高,不允许留设施工缝。因此在施工中应当采取措施保证混凝土浇筑工作能连续进行。首先应按下式计算每小时需要浇筑混凝土的数量,即(5-35)式中 V每小时混凝土浇筑量(m 3/h);B、L、H分别为浇筑层的宽度、长度、厚度(m);t 1混凝土的初凝时间(h); t 2混凝土的运输时间(h)。根据混凝土的浇筑量,即可计算所需搅拌机、运输工具和振动器的数量,并据此拟定浇筑方案和进行劳动组织。常用的浇筑方案是采用分段分层的方法,有以下几种 (见图 5-4)(a)全面分层 在整个模板内全面分层,浇筑区面积

30、即为基础平面面积,第一层全部浇筑完毕后,再回头浇筑第二层,第二层要在第一层混凝土初凝之前,全部浇筑振捣完毕。采用这种方案,结构的平面尺寸一般不宜太大。(b)分段分层 混凝土从底层开始浇筑,进行一定距离后就回头浇第二层,如此向前呈阶梯形推进。当结构的厚度不大,分层较少时,混凝土浇筑到顶后,第一层末端的混凝土还未初凝,又可从第二层依次分层浇筑。适于在结构平面面积较大时采用。(c)斜面分层 当结构的长度大大超过厚度三倍时,可采用本方案。振捣工作从浇筑层斜面的下端开始,逐渐上移,以保证混凝土的浇筑质量。(二)大体积混凝土施工的温度监测大体积混凝土施工中加强温度监测,实行信息化控制。随时掌握混凝土内的温

31、度变化对于防止开裂有决定性意义。1温度监测要求(1)要求1)大体积混凝土的温控施工中,除应进行水泥水化热的测试外,在混凝土浇筑过程中还应进行混凝土浇筑温度的监测,在养护过程中还进行混凝土浇筑块升降温、里外温差、降温速度及环境温度等监测。 图 5-5 是对质点温测曲线。2)混凝土浇筑温度系指混凝土振捣后,位于混凝土上表面以下 50100mm 深处的温度。混凝土浇筑温度的测试每工作班(8h)应不少于 2 次。3)大体积混凝土浇筑块体里外温差、降温速度及环境温度的测试,每层夜应不少于 2 次。(2)大体积混凝土浇筑块体温度监测点的布置,以真实地反映出混凝土块体的里外温差、降温速度及环境温度为原则。 如图 5-6 为施工现场温度检测平面图。2对测温元件及检测仪表的要求(1)测温元件及检测仪表选择主要要求是保证具有足够的精度及可靠性以满足施工过程中温控要求。1)测温元件选择:(1)元件的测温误差不大于 0.3;(2)元件安装前必须经过浸水 24h 后,按上一条款要求进行筛选。2)监测仪表选择:应保证温度记录的误差不大于1。(2)测温元件的安装及保证要求:1)安装位置准确,固定牢固,并与结构钢筋及固定架金属体绝热;2)引出线应集中布置并加以保护。3)混凝土浇筑过程中,下料时不得直接冲击测温元件及其引出线;振捣时,振捣器不得触及测温元件及其引出线。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报