1、高中数学教案 第七章 直线和圆的方程(第 16 课时) 王新敞新疆奎屯市一中 第 1 页(共 5 页)课 题:7.5 曲线和方程(二)教学目的:1了解什么叫轨迹,并能根据所给的条件,选择恰当的直角坐标系求曲线的轨迹方程,画出方程所表示的曲线 新 疆学 案王 新 敞2在形成概念的过程中,培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想,以及坐标法、待定系数法等常用的数学方法 新 疆学 案王 新 敞3培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神 新 疆学 案王 新 敞教学重点:求曲线方程的方法、步骤教学难点:定
2、义中规定两个关系(纯粹性和完备性) 新 疆学 案王 新 敞授课类型:新授课 新 疆学 案王 新 敞课时安排:1 课时 新 疆学 案王 新 敞教 具:多媒体、实物投影仪 新 疆学 案王 新 敞教法分析:第一课时概念强、思维量大、例题习题不多使用启发方法符合学生的认知规律 新 疆学 案王 新 敞第二、第三课时规律性强,题目多,可结合实际灵活采用教学方法在探索一般性解题方法时,可采用发现法教学,在方法的应用及拓广时,可采用归纳法;在训练与反馈部分,则主要采用讲练结合法进行 新 疆学 案王 新 敞教学过程:一、复习引入:1“曲线的方程”、“方程的曲线”的定义:在直角坐标系中,如果某曲线 C 上的点与一
3、个二元方程 的实0),(yxf数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解;(纯粹性) 新 疆学 案王 新 敞(2)以这个方程的解为坐标的点都是曲线上的点(完备性) 新 疆学 案王 新 敞那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线 新 疆学 案王 新 敞2定义的理解:在领会定义时,要牢记关系(1)、(2)两者缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件两者满足了, “曲线的方程”和“方程的曲线”才具备充分性只有符合关系(1)、 (2),才能将曲线的研究转化为方程来研究,即几何问题的研究转化为代数问题这种“以数论形”的思想是解析几何的基本思想和基本方法 新
4、疆学 案王 新 敞 二、讲解新课:1. 坐标法 新 疆学 案王 新 敞高中数学教案 第七章 直线和圆的方程(第 16 课时) 王新敞新疆奎屯市一中 第 2 页(共 5 页)在笛卡尔以前,人们对代数方程已经有了一定的研究,但是对于二元方程的研究较少,因为大家认识到二元方程 的解都是不确定的 新 疆学 案王 新 敞 对于这0),(yxf种“不定方程 ”,除了有少数人研究它的整数解以外,大多数人都0),(yxf认为研究它是没有意义的,是不必要的。笛卡尔却对对这个“没有意义的课题”赋予了新的生命,他没有把 看成是未知数,而是创造性地把 看成是变量, x(从此,变量引入了数学),让 连续地变,则对每一个
5、确定的 的值,一般来x说都可以从方程 算出相应的 值(这就是函数思想的萌芽) 新 疆学 案王 新 敞 然后,0),(yfy他把这些点的集合便构成了一条曲线 C 新 疆学 案王 新 敞 由这样得出的曲线 C 和方程有非常密切的关系:曲线上每一个点的一对坐标都是方程的一个0),(yxf实数解;反之,方程的每一个实数解对应的点都在曲线上 新 疆学 案王 新 敞 这就是说,曲线上的点集和方程的实数解集具有一一对应的关系 新 疆学 案王 新 敞 这个“一一对应”的关系导致了曲线的研究也可以转化成对曲线的研究 新 疆学 案王 新 敞 这种通过研究方程的性质,间接地来研究曲线性质的方法叫做坐标法 新 疆学
6、案王 新 敞(就是借助于坐标系研究几何图形的方法) 新 疆学 案王 新 敞根据几何图形的特点,可以建立不同的坐标系 新 疆学 案王 新 敞 最常用的坐标系是直角坐标系和极坐标。在目前的中学阶段只采用了直角坐标系 新 疆学 案王 新 敞 2解析几何的创立意义及其基本问题在数学中,用坐标法研究几何图形的知识形成的一门学科,叫解析几何 新 疆学 案王 新 敞 它是一门用代数方法研究几何问题的数学学科,产生于十七世纪初期,法国数学家笛卡尔是解析几何的奠基人 新 疆学 案王 新 敞 另一位法国数学家费马也是解析几何学的创立者 新 疆学 案王 新 敞 他们创立解析几何,在数学史上具有划时代的意义:一是在数
7、学中首次引入了变量的概念,二是把数与形紧密地联系起来了 新 疆学 案王 新 敞 解析几何的创立是近代数学开端的标志,为数学的应用开辟了广阔的领域 新 疆学 案王 新 敞 3平面解析几何研究的主要问题根据已知条件求出表示平面曲线的方程;通过方程,研究平面曲线的性质 新 疆学 案王 新 敞 本节主要通过例题的形式学习第一个问题,即如何求曲线的方程 新 疆学 案王 新 敞 小结时总结出求简单的曲线方程的一般步骤 新 疆学 案王 新 敞4求简单的曲线方程的一般步骤:(1)建立适当的坐标系,用有序实数对表示曲线上任意一点 M 的坐标;(2)写出适合条件 P 的点 M 的集合;(3)用坐标表示条件 P(
8、M) ,列出方程 ;0),(yxf(4)化方程 为最简形式;0),(yxf高中数学教案 第七章 直线和圆的方程(第 16 课时) 王新敞新疆奎屯市一中 第 3 页(共 5 页)(5)证明以化简后的方程的解为坐标的点都是曲线上的点 新 疆学 案王 新 敞三、讲解范例:选题意图:考查求轨迹方程的基本方法 新 疆学 案王 新 敞例 1 设 A、B 两点的坐标是(1,0)、(-1,0),若 ,求动点 M1MBAk的轨迹方程 新 疆学 案王 新 敞解:设 M 的坐标为 ,M 属于集合 P= .由斜),(yxBA率公式,点 M 所适合的条件可表示为,)1(1yx整理后得 ( 1) 新 疆学 案王 新 敞2
9、x下面证明 (x1) 是点 M 的轨迹方程 新 疆学 案王 新 敞y(1)由求方程的过程可知,M 的坐标都是方程 (x1)的解;12yx(2)设点 的坐标 是方程 (x1) 的解,1),(1yx2即 ,)1(2221 xyx11 11BMAk由上述证明可知,方程 (x1) 是点 M 的轨迹方程 新 疆学 案王 新 敞12yx说明:所求的方程 后面应加上条件 新 疆学 案王 新 敞2例 2 点 M 到两条互相垂直的直线的距离相等,求点 M 的轨迹方程.解:取已知两条互相垂直的直线为坐标轴,建立直角坐标系,如图所示,设点 M 的坐标为 ,点 M 的),(yx轨迹就是到坐标轴的距离相等的点的集合P=
10、 ,其中 Q、R 分别是点 M 到 x 轴、 y 轴的垂线的垂足 新 疆学 案王 新 敞RMQ xOy高中数学教案 第七章 直线和圆的方程(第 16 课时) 王新敞新疆奎屯市一中 第 4 页(共 5 页)因为点 M 到 x 轴、y 轴的距离分别是它的纵坐标和横坐标的绝对值,所以条件 可写成 即 =0 xyx下面证明是所求轨迹的方程 新 疆学 案王 新 敞(1)由求方程的过程可知,曲线上的点的坐标都是方程的解;(2) 设点 的坐标 是方程的解,那么 ,即1),(1y1y ,而 、 正是点 到纵轴、横轴的距离,因此1xyxM点 到这两条直线的距离相等,点 是曲线上的点 新 疆学 案王 新 敞M1由
11、(1)(2)可知,方程是所求轨迹的方程,图形如图所示.点评:建立适当的坐标系能使求轨迹方程的过程较简单.所求方程的形式较“整齐” 新 疆学 案王 新 敞四、课堂练习:1求点 P 到点 F(4,0)的距离比它到直线 +5=0 的距离小 1 的点的轨x迹方程 新 疆学 案王 新 敞解:设 P 为所求轨迹上任意一点,),(yx点 P 到 F 的距离比它到直线 +5=0 的距离小 1.x故点 P 到 F(4,0)的距离与点 P 到直线 +4=0 的距离 PD相等 新 疆学 案王 新 敞 PF= PD = -(-4)2)(yx 新 疆学 案王 新 敞y1622.过点 P(2,4)作互相垂直的直线 , ,
12、若 交 轴于 A, 交 轴于1l21lx2lyB,求线段 AB 中点 M 的轨迹方程 新 疆学 案王 新 敞解法一:设 M 为所求轨迹上任一点,),(yx M 为 AB 中点, A(2 ,0),B(0,2 ),y 且 , 过点 P(2,4) , PA PB 1l21l 1PBAk = (x1), =PAkBk =-1 即 +2 -5=0( 1) 新 疆学 案王 新 敞24yxyx当 =1 时, A(2,0) 、 B(0,4),此时 AB 中点 M 的坐标为(1,2) ,它x高中数学教案 第七章 直线和圆的方程(第 16 课时) 王新敞新疆奎屯市一中 第 5 页(共 5 页)也满足方程 +2 -5=0.xy所求点 M 的轨迹方程为 +2 -5=0 新 疆学 案王 新 敞xy解法二:连结 PM. 设 M ,则 A(2 ,0),B(0,2 )( , PAB 为直角三角形1l PM= AB2即 2241)4()( yxyx化简: +2 -5=0所求点 M 的轨迹方程为 +2 -5=0 新 疆学 案王 新 敞五、小结 :求简单的曲线方程的一般步骤 新 疆学 案王 新 敞 新 疆学 案王 新 敞六、课后作业: 新 疆学 案王 新 敞 新 疆学 案王 新 敞七、板书设计(略) 新 疆学 案王 新 敞八、课后记: 新 疆学 案王 新 敞PBM AxOy