收藏 分享(赏)

北师大版三角形的证明(全章节复习题).doc

上传人:精品资料 文档编号:8717791 上传时间:2019-07-09 格式:DOC 页数:32 大小:663KB
下载 相关 举报
北师大版三角形的证明(全章节复习题).doc_第1页
第1页 / 共32页
北师大版三角形的证明(全章节复习题).doc_第2页
第2页 / 共32页
北师大版三角形的证明(全章节复习题).doc_第3页
第3页 / 共32页
北师大版三角形的证明(全章节复习题).doc_第4页
第4页 / 共32页
北师大版三角形的证明(全章节复习题).doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、 第 1 页 共 32 页等腰三角形(基础)知识讲解【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图

2、所示,在ABC 中,ABAC,ABC 是等腰三角形,其中 AB、AC 为腰,BC 为底边,A 是顶角,B、C 是底角2.等腰三角形的作法已知线段 a,b(如图).用直尺和圆规作等腰三角形 ABC,使 AB=AC=b,BC=a.作法:1.作线段 BC=a;2.分别以 B,C 为圆心,以 b 为半径画弧,两弧 相交于点 A;3.连接 AB,AC.ABC 为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)BC;(3)BDCD,AD 为底边上的中线.第 2 页 共 32 页(4)ADBADC90,AD 为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或

3、中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角) ,但顶角可为钝角(或直角).A1802B,BC .1802A(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质 1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角” 推论:等边三角形的三个内角都相等,并且每个内角都等于

4、60.性质 2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一” 2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。(2)等腰三角形两底边上的中点到两腰的距离相等.(3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等.(4)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等.要点三、等腰三角形的判定定理1.等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以

5、简单的说成:在一个三角形中,等角对等边.要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系.(2)不能说“一个三角形两底角相等,那么两腰边相等” ,因为还未判定它是一个等腰三角形2.等边三角形的判定定理三个角相等的三角形是等边三角形.有一个角是 60的等腰三角形是等边三角形.3. 含有 30角的直角三角形第 3 页 共 32 页定理:在直角三角形中,如果一个锐角等于 30,那么它所对的直角边等于斜边的一半.要点四、反证法在证明时,先假设命题的结论不成立,然后从这个假设出发,经过逐步推导论证,最后推出与学

6、过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果,从而证明命题的结论一定成立,这种证明命题的方法叫做反证法.要点诠释:反证法也称归谬法,是一种间接证明的方法,一般适用于直接证明有困难的命题一般证明步骤如下:(1) 假定命题的结论不成立;(2) 从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果; (3)由矛盾的结果,判定假设不成立,从而说明命题的结论是正确的.【典型例题】类型一、等腰三角形中有关角度的计算题1、如图,在ABC 中,D 在 BC 上,且 ABACBD,130,求2 的度数.举一反三:【变式】已知:如图,D、

7、E 分别为 AB、AC 上的点,ACBCBD,ADAE,DECE,求B 的度数类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为 40,求其余各角第 4 页 共 32 页3、已知等腰三角形的周长为 13,一边长为 3,求其余各边举一反三:【变式】已知等腰三角形的底边 BC8 ,且|ACBC|2 ,那么腰 AC 的长为( cmcm)A10 或 6 B10 C6 D8 或 6cm类型三、等腰三角形的性质及其运用4、如图,在ABC 中,边 ABAC求证:ACBABC举一反三:【变式】已知:如图,在ABC 中,AB=AC,A=60,BD 是中线,延长 BC 至点 E,使CE=CD求证:DB=

8、DE第 5 页 共 32 页5、已 知 : 如 图 , ABC 的 两 条 高 BE、 CD 相 交 于 点 O, 且 OB=OC, 求 证 : ABC 是 等 腰 三 角 形 举一反三【变式 1】如 图 , 在 ABC 中 , AB=AC, BAD= CAE, 点 D、 E 在 BC 上 , 试 说 明 ADE 是 等 腰 三 角 形 类型三、 含有 30角的直角三角形6. 如图所示,ABC 中,ACB=90,CDAB,垂足是 D,A=60.求证:BD=3AD.第 6 页 共 32 页举一反三:【变式】如图,等边三角形 ABC 内一点 P,AP=3,BP=4,CP=5,求APB 的度数类型四

9、、反证法7. 求证:在一个三角形中,至少有一个内角小于或等于 60。举一反三:【变式】下列选项中,可以用来证明命题“若 a21,则 a1”是假命题的反例是( )A . a= 2 B . a= 1 C . a=1 D. a=2【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为 5,6,则它的周长为( ) A16 B17 C16 或 17 D10 或 122. 用反证法证明命题:如果 ABCD,ABEF,那么 CDEF,证明的第一个步骤是( )A. 假设 CDEF ;B. 假设 ABEFC. 假设 CD 和 EF 不平行D. 假设 AB 和 EF 不平行3. 将两个全等的且有一个角为 30

10、的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是( ) A. 4 个 B. 3 个 C. 2 个 D. 1 个第 7 页 共 32 页4. 已知实数 x,y 满足|x4|+(y8) 20,则以 x,y 的值为两边长的等腰三角形的周长是( )A20 或 16 B20 C16 D以上答案均不对5. 如图,D 是 AB 边上的中点,将 沿过 D 的直线折叠,使点 A 落在 BC 上 F 处,若A,则 度数是( ) 50BFA60 B70 C80 D不确定 6. 如图,在ABC 中,AB=AC,BD 是ABC 的平分线,若ADB=93,则A=( )A31 B46.5

11、C56 D62二.填空题7如图,ABC 中,D 为 AC 边上一点,ADBDBC,若A40,则CBD_ 8. 等腰三角形的顶角比其中一个底角大 30,则顶角的度数为 9.用反证法证明“如果同位角不相等,那么这两条直线不平行“的第一步应假设_.10. 等腰三角形的一个角是 70,则它的顶角的度数是 .11.如图,AD 是ABC 的边 BC 上的高,由下列条件中的某一个就能推出ABC 是等腰三角形的是 _ (把所有正确答案的序号都填写在横线上)BAD=ACD;BAD=CAD;AB+BD=AC+CD;ABBD=ACCD12. 如 图 , ABC 的 周 长 为 32, 且 AB=AC, AD BC

12、于 D, ACD 的 周 长 为 24, 那么 AD 的 长 为 .第 8 页 共 32 页三.解答题13已知:如图,ABC 中,ABAC,D 是 AB 上一点,延长 CA 至 E,使 AEAD试确定 ED 与 BC 的位置关系,并证明你的结论14.如图,在ABC 中,ACB=90,AC=BC,BECE 于点 EADCE 于点 D求证:BECCDA15. 用反证法证明:等腰三角形的底角是锐角第 9 页 共 32 页角的平分线的性质(基础)【学习目标】1掌握角平分线的性质,理解三角形的三条角平分线的性质2掌握角平分线的判定及角平分线的画法3. 熟练运用角的平分线的性质解决问题【要点梳理】要点一、

13、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若 CD 平分ADB,点 P 是 CD 上一点,且 PEAD 于点 E,PFBD 于点 F,则 PEPF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若 PEAD 于点 E,PFBD 于点 F,PEPF,则 PD 平分ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以 O 为圆心,适当长为半径画弧,交 OA 于 D,交 OB 于 E.(2)分别以 D、E 为圆心,大于 DE 的长为半径画弧

14、,两弧在AOB 内部交于点 C.12(3)画射线 OC.射线 OC 即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.第 10 页 共 32 页三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有 4 个.如图所示:ABC 的内心为 ,旁心为 ,这四个点到ABC 三边所在直线距离相等.1P234,P【典型例题】类型一、角的平分线的性质1如图,ACB90,BD 平分ABC 交 AC 于 D,DEAB 于 E,ED 的延长线交 BC 的延

15、长线于 F. 求证:AECF.2、如图, ABC 中, C 90, AC BC, AD 平分CAB, 交 BC 于 D, DEAB于 E, 且 AB6 , 则DEB 的周长为( ) cmA. 4 B. 6 C.10 D. 以上都不对cm举一反三:【变式】已知:如图,AD 是ABC 的角平分线,且 ,则ABD 与ACD:3:2ABC的面积之比为( )第 11 页 共 32 页A3:2 B C2:3 D.3: 2:33、如图,OC 是AOB 的角平分线,P 是 OC 上一点,PDOA 交于点 D,PEOB 交于点E,F 是 OC 上除点 P、O 外一点,连接 DF、EF,则 DF 与 EF 的关系

16、如何?证明你的结论类型二、角的平分线的判定4、已知,如图,CEAB,BDAC,BC,BFCF.求证:AF 为BAC 的平分线.第 12 页 共 32 页举一反三:【变式】如图,在ABC 中,D 是 BC 的中点,DEAB,DFAC,垂足分别是E,F,BECF求证:AD 是ABC 的角平分线.【巩固练习】一.选择题1. AD 是ABC 的角平分线, 自 D 点向 AB、AC 两边作垂线, 垂足为 E、F, 那么下列结论中错误的是( )A.DE DF B. AE AF C.BD CD D. ADE ADF2如图,在 RtABC 中,C90,BD 是ABC 的平分线,交 AC 于 D,若 CD ,A

17、Bn,则 ABD 的面积是( )mA B C D2n31mn21nm3. 如图, OP平分 ,MNAO于点 ,点 Q是射线 OM上的一个动点,若2A,则 Q的最小值为( )A.1 B.2 C.3 D. 44. 到三角形三边距离相等的点是( )A.三角形三条高线的交点 B.三角形三条中线的交点C三角形三边垂直平分线的交点 D.三角形三条内角平分线的交点第 13 页 共 32 页5. 如图,下列条件中不能确定点 O 在APB 的平分线上的是( )APBAPDC B. AODCOB C. ABPD,DCPB D.点 O 到APB 两边的距离相等.6. 已知,如图,ABCD,BAC、ACD 的平分线交

18、于点 O,OEAC 于 E,且 OE5 ,cm则直线 AB 与 CD 的距离为( )A. 5 B. 10 C. 15 D. 20cmcmcmc二.填空题7如图,已知C90,AD 平分BAC,BD2CD,若点 D 到 AB 的距离等于 5 ,则 BCcm的长为_ cm8. 如图,在ABC 中,C90,DEAB,12,且 AC6 ,那么线段 BE 是cmABC 的 ,AEDE 。9. 已知:如图,在 ABC 中,BD、CE 分别平分ABC、ACB,且 BD、CE 交于点 O,过 O作 OPBC 于 P,OMAB 于 M,ONAC 于 N,则 OP、OM、ON 的大小关系为_10.如图,直线 1l、

19、 2、 3l表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有 处.第 14 页 共 32 页11已知:如图,在 RtABC 中,C90,沿着过点 B 的一条直线 BE 折叠 ABC,使C 点恰好落在 AB 边的中点 D 处,则A 的度数等于_12.已知如图点 D 是ABC 的两外角平分线的交点,下列说法(1)ADCD (2)D 到 AB、BC 的距离相等(3)D 到ABC 的三边的距离相等 (4)点 D 在B 的平分线上其中正确的说法的序号是_.三.解答题13已知,如图,CD90,E 是 CD 上一点,AE、BE 分别平分DAB、ABC.求证:E 是

20、CD 的中点.第 15 页 共 32 页14如图,在 ABC 中,C90,BD 平分ABC,DEAB 于 E,若BCD 与BCA 的面积比为 38,求ADE 与BCA 的面积之比15. 已知:如图,ABC 的外角CBD 和BCE 的平分线 BF、CF 交于点 F.求证:一点 F 必在DAE 的平分线上线段的垂直平分线-知识讲解(基础)【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形. 4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问

21、题及实际问题【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线2.线段垂直平分线的做法求作线段 AB 的垂直平分线.第 16 页 共 32 页作法:(1)分别以点 A,B 为圆心,以大于 21AB 的长为半径作弧,两弧相交于 C,D 两点;(2)作直线 CD,CD 即为所求直线要点诠释:(1)作弧时的半径必须大于 AB 的长,否则就不能得到两弧的交点了(2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等要点诠释:线段的垂直平分线定理也就

22、是线段垂直平分线的性质,是证明两条线段相等的常用方法之一同时也给出了引辅助线的方法, “线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心外心. 要点诠释:1.三

23、角形三条边的垂直平分线必交于一点(三线共点) ,该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合. 3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图” ,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx 即为所求”.【典型例题】类型一、线段的垂直平分线定理1、如图,ABC 中 ACBC,边 AB 的垂直平分线与 AC 交于点 D,已知 AC=5,BC=4,第 17 页 共 32

24、 页则BCD 的周长是( )A9 B8 C7 D6举一反三:【变式 1】如图,在ABC 中,AB=AC,A=36,AB 的垂直平分线 DE 交 AC 于 D,交 AB于 E,下述结论错误的是( )ABD 平分ABC BBCD 的周长等于 AB+BCCAD=BD=BC D点 D 是线段 AC 的中点【变式 2】如图所示,在ABC 中,DE 是 AC 的中垂线,AE3cm,ABD 的周长为 13cm,则ABC 的周长是 cm类型二、线段的垂直平分线的逆定理2、如图,已知 AB=AC,ABD=ACD,求证:AD 是线段 BC 的垂直平分线第 18 页 共 32 页举一反三:【变式】如图,P 是MON

25、 的平分线上的一点,PAOM,PBON,垂足分别为 A、B求证:PO 垂直平分 AB类型三、线段的垂直平分线定理与逆定理的综合应用3、已知:如图,AB=AC,DB=DC,E 是 AD 上一点 求证:BE=CE CBADE4、如图所示,在 RtABC 中,ACB=90,AC=BC,D 为 BC 边上的中点,CEAD 于点 E,BFAC 交 CE 的延长线于点 F,求证:AB 垂直平分 DF第 19 页 共 32 页举一反三:【变式】如图,在ABC 中,AB=AC,A=120,AB 的垂直平分线 MN 分别交 BC、AB 于点M、N. 求证:CM=2BM. 类型四、尺规作图5、如图,A,B,C 是

26、新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校,你能确定学校的位置吗?线段的垂直平分线巩固练习(基础)【巩固练习】一选择题1如图,在 RtABC 中,B=90,ED 是 AC 的垂直平分线,交 AC 于点 D,交 BC 于点E已知BAE=10,则C 的度数为( )A30 B40 C50 D60第 20 页 共 32 页2如图,ABC 中,DE 是 AB 的垂直平分线,交 BC 于点 D,交 AB 于点 E,已知 AE=1cm,ACD 的周长为 12cm,则ABC 的周长是( )A13cm B14cm C15cm D16cm3 如图,在ABC 中,A=105,AE 的垂直平

27、分线 MN 交 BE 于点 C,且 AB+BC=BE,则B 的度数是( )A45 B60 C50 D554如图,已知直角三角形 ABC 中,ACB=90,E 为 AB 上一点,且 CE=EB,EDCB 于 D,则下列结论中不一定成立的是( )AAE=BE BCE= 21AB CCEB=2A DAC= 21AB5如图,等腰ABC 中,AB=AC,A=20线段 AB 的垂直平分线交 AB 于 D,交 AC 于E,连接 BE,则CBE 等于( )A、80 B、70C、60 D、506如图所示,BEAC 于点 D,且 ADCD,BDED,若ABC54,则E( ) A25 B27 C30 D45第 21

28、 页 共 32 页二填空题7 ABC 中,若 ABAC2cm,BC 的垂直平分线交 AB 于 D 点,且 ACD 的周长为 14cm,则 AB_,AC_8如图,ABC 中,ABAC,AB 的垂直平分线交 AC 于 P 点(1)若A35,则BPC_;(2)若 AB5 cm,BC3 cm,则 PBC 的周长_9如图,在ABC 中,BC 边上的垂直平分线 DE 交边 BC 于点 D,交边 AB 于点 E若EDC的周长为 24,ABC 与四边形 AEDC 的周长之差为 12,则线段 DE 的长为 10如图,在 ABC 中,C90,A30,CD2cm, AB 的垂直平分线 MN 交 AC 于D,连结 B

29、D,则 AC 的长是_cm 11如图,在ABC 中,C90,AB 的垂直平分线 MN 分别交 AC,AB 于点 D,E 若CBD : DBA 3:1,则A 的度数为_ 第 22 页 共 32 页12如图,在ABC 中,AC16cm,AB 的垂直平分线交 AC 于 D,如果 BC10 cm,那么BCD 的周长是 cm三解答题: 13已知ABC 中,AD 是BAC 的平分线,AD 的垂直平分线交 BC 的延长线于 F求证:BAF=ACF14如图,在四边形 ABCD 中,ADBC,E 为 CD 的中点,连接 AE、BE,BEAE,延长 AE交 BC 的延长线于点 F求证:(1)FC=AD;(2)AB

30、=BC+AD15为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点 P,使 P 到该镇所属 A 村、B 村、C 村的村委会所在地的距离都相等(A、B、C 不在同一直线上,地理位置如下图) ,请你用尺规作图的方法确定点 P 的位置要求:写出已知、求作;不写作法,保留作图痕迹第 23 页 共 32 页三角形的证明全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点

31、一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一” )3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于 60;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有 3 条对称轴.第 24 页 共 32 页判定定理:有一个角是 60的等腰三角形是等边三角形;三个角都相等的

32、三角形是等边三角形.4.含 30的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于 30,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为 a 的等边三角形他的高是 ,面积是 ;32a234a含有 30的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题

33、与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)要点诠释:勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方” ,应该说成“三角形两边的平方和等于第三边的平方 ”.直角三角形的全等判定方法,还有 SSS,SAS,ASA,AAS,一共有 5 种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.

34、三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点 A、B 为圆心,以大于 12AB 的长为半径作弧,两弧交于点M、N;作直线 MN,则直线 MN 就是线段 AB 的垂直平分线.要点诠释:注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质

35、定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.第 25 页 共 32 页3.如何用尺规作图法作出角平分线要点诠释:注意区分角平分线性质定理和判定定理,注意二者的应用范围;几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、能证明它们么1. 如图,ACD 和BCE 都是等腰直角三角形,ACD=BCE=90,AE 交 CD 于点F,BD 分别交 CE、AE 于点 G、H试猜测线段 AE 和 BD 的数量和位置关系,并说明理由举一反三:【变式】将两个全等的直角三角形 ABC 和 DBE 按图 1 方式摆放,其中ACB=D

36、EB=90,A=D=30,点 E 落在 AB 上,DE 所在直线交 AC 所在直线于点 F(1)求证:AF+EF=DE;(2)若将图 1 中的DBE 绕点 B 按顺时针方向旋转角 ,且 060,其它条件不变,请在图 2 中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图 1 中的DBE 绕点 B 按顺时针方向旋转角 ,且 60180,其它条件不变,如图 3你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出 AF、EF 与 DE 之间的关系,并说明理由第 26 页 共 32 页类型二、直角三角形2. 下列说法正确的说法个数是( )两个锐角对应相等

37、的两个直角三角形全等,斜边及一锐角对应相等的两个直角三角形全等,两条直角边对应相等的两个直角三角形全等,一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等A 1 B 2 C 3 D 43. 如图:AB=AD,ABC=ADC=90,EF 过点 C,BEEF 于 E,DFEF 于F,BE=DF 求证:RtBCERtDCF类型三、线段垂直平分线4. 如图,在锐角ABC 中,AD、CE 分别是 BC、AB 边上的高,AD、CE 相交于 F,BF的中点为 P,AC 的中点为 Q,连接 PQ、DE(1)求证:直线 PQ 是线段 DE 的垂直平分线;(2)如果ABC 是钝角三角形,BAC90,那么

38、上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明第 27 页 共 32 页举一反三:【变式】在ABC 中,AB=AC,AB 的垂直平分线交 AB 于 N,交 BC 的延长线于 M,A=40度(1)求M 的度数;(2)若将A 的度数改为 80,其余条件不变,再求M 的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的A 改为钝角, (3)中的规律仍成立吗?若不成立,应怎样修改类型四、角平分线5. 如图,ABC 中,A=60,ACB 的平分线 CD 和ABC 的平分线 BE 交于点G求证:GE=GD第 28 页 共 32 页举一反三:【变式】如图:在ABC 中,C

39、=90 AD 是BAC 的平分线,DEAB 于 E,F 在 AC 上,BD=DF;证明:(1)CF=EB(2)AB=AF+2EB三角形的证明全章复习与巩固(提高)【巩固练习】一.选择题1有一块边长为 24 米的正方形绿地,如图所示,在绿地旁边 B 处有健身器材,由于居住在 A 处的居民践踏了绿地,小明想在 A 处树立一个标牌“少走米,踏之何忍”请你计算后帮小明在标牌的“”填上适当的数字是( )A 3 米 B 4 米 C 5 米 D 6 米2. 设 M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是( )第 29 页 共 3

40、2 页A B C D3. 如图,EAAB,BCAB,EA=AB=2BC,D 为 AB 中点,有以下结论:(1)DE=AC;(2)DEAC;(3)CAB=30;(4)EAF=ADE。其中结论正确的是( )A、(1),(3) B、(2),(3) C、(3),(4) D、(1),(2),(4)4. 如图,ABC 中,C=90,AC=BC,AD 平分CAB 交 BC 于点 D,DEAB,垂足为 E,且 AB=6cm,则DEB 的周长为( )A、4cm B、6cm C、8 cm D、10cm5.如图,ABC 中,AB=AC,点 D 在 AC 边上,且 BD=BC=AD,则A 的度数为( )A、30 B、

41、36 C、45 D、706.如图,已知 AC 平分PAQ,点 B,B分别在边 AP,AQ 上,如果添加一个条件,即可推出 AB=AB,那么该条件不可以是( )A、BBAC B、BC=BC C、ACB=ACB D、ABC=ABC7. 如图,等边三角形 ABC 的边长为 3,点 P 为 BC 边上一点,且 BP=1,点 D 为 AC 边上一点若APD=60,则 CD 的长为( )A 12 B 3 C 4D1 第 30 页 共 32 页AB CDP60图10图图8. 在联欢晚会上,有 A、B、C 三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜

42、,为使游戏公平,则凳子应放的最适当的位置是在ABC 的( )A、三边中线的交点 B、三条角平分线的交点 C、三边上高的交点 D、三边中垂线的交点二、填空题9. 如图,有一底角为 35的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是_ 10. 用反证法证明 “三角形中至少有一个角不小于 60时,第一步为假设“ ”11. 如图,在 RtABC 中C=90,BC=6,AC=8,点 D 在 AC 上,将BCD 沿 BD 折叠,使点 C 恰好落在 AB 边的点 C处,则ADC的面积是_.12. 如图,长方体的长为 5,宽为 3,高为 12,点 B 离点 C 的距离为 2,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B,需要爬行的最短距离是_.13. 已知实数 x,y 满足 ,则以 x,y 的值为两边长的等腰三角形的周长是_.14. 如图,在ABC 中,B=50,三角形的外角DAC 和ACF 的平分线交于点 E,则AEC=_ 35

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报