1、精选高中模拟试卷第 1 页,共 16 页凤泉区高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知 a= ,b=2 0.5,c=0.5 0.2,则 a,b,c 三者的大小关系是( )Abca Bba c Ca bc Dcba2 单位正方体(棱长为 1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A该几何体体积为 B该几何体体积可能为C该几何体表面积应为 + D该几何体唯一3 在ABC 中,内角 A,B,C 所对的边分别为 a,b,c ,已知 a=3, ,A=60,则满足条件的三角形个数为( )A0 B1 C2 D以上都不对4 如图,四面体
2、 DABC 的体积为 ,且满足 ACB=60,BC=1,AD+ =2,则四面体 DABC 中最长棱的长度为( )A B2 C D35 在平面直角坐标系 中,向量 ( 1,2), (2,m),若 O,A,B 三点能构成三角形,则( )A B C D精选高中模拟试卷第 2 页,共 16 页6 3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士不同的分配方法共有( )A90 种 B180 种 C270 种 D540 种7 设集合 , ,则 ( )|2xR|10BxZABA. B. C. D. |12x12,1,2【命题意图】本题考查集合的概念,集合的运算等基础
3、知识,属送分题8 将函数 的图象向左平移 个单位,再向上平移 3 个单位,得到函数 的图象,)63sin()(xf 4 )(xg则 的解析式为( ))(xgA B)4i(2 )3sin(2)(xgC D31sn)(1【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.9 满足条件0,1A=0,1的所有集合 A 的个数是( )A1 个 B2 个 C3 个 D4 个10已知 a,b 都是实数,那么“a 2b 2”是“ab”的( )A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件11已知函数 f(x)=Asin ( x )(A
4、0, 0)的部分图象如图所示,EFG 是边长为 2 的等边三角形,为了得到 g(x)=Asin x 的图象,只需将 f(x)的图象( )A向左平移 个长度单位 B向右平移 个长度单位C向左平移 个长度单位 D向右平移 个长度单位12已知直线 l平面 ,P,那么过点 P 且平行于 l 的直线( )A只有一条,不在平面 内B只有一条,在平面 内精选高中模拟试卷第 3 页,共 16 页C有两条,不一定都在平面 内D有无数条,不一定都在平面 内二、填空题13直线 ax+ by=1 与圆 x2+y2=1 相交于 A,B 两点(其中 a,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点 P(a
5、,b)与点(1,0)之间距离的最小值为 14已知线性回归方程 =9,则 b= 15【2017-2018 学年度第一学期如皋市高三年级第一次联考】已知函数 的零点在区间ln4fx内,则正整数 的值为_1k, k16设 MP 和 OM 分别是角 的正弦线和余弦线,则给出的以下不等式:MP OM0;OM0MP;OM MP 0;MP0OM,其中正确的是 (把所有正确的序号都填上)17已知 a= ( cosxsinx)dx,则二项式(x 2 ) 6 展开式中的常数项是 18已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_(单位: )三、解答题19如图,
6、菱形 ABCD 的边长为 2,现将ACD 沿对角线 AC 折起至ACP 位置,并使平面 PAC平面ABC ()求证:ACPB;精选高中模拟试卷第 4 页,共 16 页()在菱形 ABCD 中,若ABC=60,求直线 AB 与平面 PBC 所成角的正弦值;()求四面体 PABC 体积的最大值20ABC 的三个内角 A、B、C 所对的边分别为 a、b、c ,asinAsinB+bcos 2A= a()求 ;()若 c2=b2+ a2,求 B21(本小题满分 12 分)ABC 的三内角 A,B,C 的对边分别为 a,b,c,AD 是 BC 边上的中线(1)求证:AD ;122b2 2c2 a2(2)
7、若 A120,AD , ,求ABC 的面积192sin Bsin C35精选高中模拟试卷第 5 页,共 16 页22在平面直角坐标系 XOY 中,圆 C:(x a) 2+y2=a2,圆心为 C,圆 C 与直线 l1:y=x 的一个交点的横坐标为 2(1)求圆 C 的标准方程;(2)直线 l2 与 l1 垂直,且与圆 C 交于不同两点 A、B,若 SABC=2,求直线 l2 的方程23已知函数 f(x)= ,求不等式 f( x)4 的解集24已知 A(3,0),B (3,0),C (x 0,y 0)是圆 M 上的三个不同的点(1)若 x0=4,y 0=1,求圆 M 的方程;(2)若点 C 是以
8、AB 为直径的圆 M 上的任意一点,直线 x=3 交直线 AC 于点 R,线段 BR 的中点为 D判断直线 CD 与圆 M 的位置关系,并证明你的结论精选高中模拟试卷第 6 页,共 16 页精选高中模拟试卷第 7 页,共 16 页凤泉区高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:a=0.5 0.5,c=0.5 0.2,0 ac1,b=2 0.51,b ca,故选:A2 【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为 1 的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为 1该几何体的表面积
9、由三个正方形,有三个两直角边为 1 的等腰直角三角形和一个边长为 的正三角形组成故其表面积 S=3(1 1)+3( 11)+ ( ) 2= 故选:C【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键3 【答案】B【解析】解:a=3, ,A=60,由正弦定理可得:sinB= = =1,B=90,即满足条件的三角形个数为 1 个故选:B【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题4 【答案】 B【解析】解:因为 AD( BCACsin60) VDABC= ,BC=1,即 AD 1,因为 2=A
10、D+ 2 =2,精选高中模拟试卷第 8 页,共 16 页当且仅当 AD= =1 时,等号成立,这时 AC= , AD=1,且 AD面 ABC,所以 CD=2,AB= ,得 BD= ,故最长棱的长为 2故选 B【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题5 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若 O,A,B 三点能构成三角形,则 O,A,B 三点不共线。若 O,A,B 三点共线,有:-m=4,m=-4故要使 O,A,B 三点不共线,则 。故答案为:B6 【答案】D【解析】解:三所学校依次选医生、护士,不
11、同的分配方法共有:C 31C62C21C42=540 种故选 D7 【答案】D【解析】由绝对值的定义及 ,得 ,则 ,所以 ,故选 D.|2x2x|2Ax1,2AB8 【答案】B【解析】根据三角函数图象的平移变换理论可得,将 的图象向左平移 个单位得到函数 的图)(f4)4(xf象,再将 的图象向上平移 3 个单位得到函数 的图象,因此 )4(xf 34x)(g3.)4sin(2631sin2x9 【答案】D【解析】解:由0,1A=0 ,1 易知:集合 A0,1而集合0,1的子集个数为 22=4故选 D【点评】本题考查两个集合并集时的包含关系,以及求 n 个元素的集合的子集个数为 2n 个这个
12、知识点,为基础题精选高中模拟试卷第 9 页,共 16 页10【答案】D【解析】解:“a 2b 2”既不能推出“ab”;反之,由“ab”也不能推出“a 2b 2”“a2b 2”是“ab”的既不充分也不必要条件故选 D11【答案】 A【解析】解:EFG 是边长为 2 的正三角形,三角形的高为 ,即 A= ,函数的周期 T=2FG=4,即 T= =4,解得 = = ,即 f(x)=Asin x= sin( x ),g(x)= sin x,由于 f(x)= sin( x )= sin (x ),故为了得到 g(x)=Asin x 的图象,只需将 f(x)的图象向左平移 个长度单位故选:A【点评】本题主
13、要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题12【答案】B【解析】解:假设过点 P 且平行于 l 的直线有两条 m 与 nml 且 nl由平行公理 4 得 mn这与两条直线 m 与 n 相交与点 P 相矛盾又因为点 P 在平面内所以点 P 且平行于 l 的直线有一条且在平面内所以假设错误故选 B【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型二、填空题精选高中模拟试卷第 10 页,共 16 页13【答案】 【解析】解:AOB 是直角三角形(O 是坐标原点),圆心到直线 ax+ by=1 的距离 d= ,即
14、d= = ,整理得 a2+2b2=2,则点 P(a,b)与点 Q(1, 0)之间距离 d= = ,点 P(a,b)与点(1,0)之间距离的最小值为 故答案为: 【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力14【答案】 4 【解析】解:将 代入线性回归方程可得 9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题15【答案】2【解析】16【答案】 【解析】解:由 MP,OM 分别为角 的正弦线、余弦线,如图, ,OM0MP故答案为:精选高中模拟试卷第 11 页,共 16 页【点评】本题的考点是三角函数线,考查用作图的方法比
15、较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小17【答案】 240 【解析】解:a= ( cosxsinx)dx=( sinx+cosx) =11=2,则二项式(x 2 ) 6=(x 2+ ) 6 展开始的通项公式为 Tr+1= 2rx123r,令 123r=0,求得 r=4,可得二项式(x 2 ) 6 展开式中的常数项是 24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题18【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。所以故答案为:
16、三、解答题19【答案】 【解析】解:()证明:取 AC 中点 O,连接 PO,BO,由于四边形 ABCD 为菱形,PA=PC,BA=BC ,POAC ,BOAC,又 POBO=O,AC平面 POB,又 PB平面 POB,ACPB()平面 PAC平面 ABC,平面 PAC平面 ABC=AC,PO平面 PAC,POAC ,PO面 ABC, OB,OC,OP 两两垂直,精选高中模拟试卷第 12 页,共 16 页故以 O 为原点,以 方向分别为 x,y,z 轴正方向建立空间直角坐标系, ABC=60 ,菱形ABCD 的边长为 2, ,设平面 PBC 的法向量 ,直线 AB 与平面 PBC 成角为 ,
17、,取 x=1,则 ,于是 , ,直线 AB 与平面 PBC 成角的正弦值为 ()法一:设ABC=APC=,(0 ,), , ,又 PO平面 ABC, =( ), ,当且仅当 ,即 时取等号,四面体 PABC 体积的最大值为 法二:设ABC=APC=, (0,), , ,又 PO平面 ABC, = ( ),设 ,则 ,且 0t1, ,当 时,V PABC0,当 时,V PABC0,当 时,V PABC 取得最大值 ,四面体 PABC 体积的最大值为 法三:设 PO=x,则 BO=x, ,(0x2)精选高中模拟试卷第 13 页,共 16 页又 PO平面 ABC, , ,当且仅当 x2=82x2,即
18、 时取等号,四面体 PABC 体积的最大值为 【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养20【答案】 【解析】解:()由正弦定理得,sin 2AsinB+sinBcos2A= sinA,即 sinB(sin 2A+cos2A)= sinAsinB= sinA, =()由余弦定理和 C2=b2+ a2,得 cosB=由()知 b2=2a2,故 c2=(2+ )a 2,可得 cos2B= ,又 cosB0,故 cosB=所以 B=45【点评】本题主要考查了正弦定理和余弦定理的应用解题的过程主要是利
19、用了正弦定理和余弦定理对边角问题进行了互化21【答案】【解析】解:精选高中模拟试卷第 14 页,共 16 页(1)证明:D 是 BC 的中点,BDDC .a2法一:在ABD 与ACD 中分别由余弦定理得 c2AD 2 2ADa24cosADB,a2b2AD 2 2AD cosADC,a24a2得 c2b 22AD 2 ,a22即 4AD22b 22c 2a 2,AD .122b2 2c2 a2法二:在ABD 中,由余弦定理得AD2c 2 2c cos Ba24a2c 2 aca24a2 c2 b22ac ,2b2 2c2 a24AD .122b2 2c2 a2(2)A120,AD , ,121
20、9sin Bsin C35由余弦定理和正弦定理与(1)可得精选高中模拟试卷第 15 页,共 16 页a2b 2c 2bc,2b22c 2a 219, ,bc35联立解得 b3,c5,a7,ABC 的面积为 S bc sin A 35sin 120 .12121534即ABC 的面积为 .154 322【答案】 【解析】解:(1)由圆 C 与直线 l1:y=x 的一个交点的横坐标为 2,可知交点坐标为(2,2),(2a) 2+( 2) 2=a2,解得:a=2,所以圆的标准方程为:(x2 ) 2+y2=4,(2)由(1)可知圆 C 的圆心 C 的坐标为(2,0)由直线 l2 与直线 l1 垂直,直
21、线 l1:y= x 可设直线 l2:y=x+m,则圆心 C 到 AB 的距离 d= ,|AB|=2 =2所以 SABC = |AB|d= 2 =2令 t=(m+2) 2,化简可得2t 2+16t32=2(t 4) 2=0,解得 t=(m+2) 2=4,所以 m=0,或 m=4直线 l2 的方程为 y=x 或 y=x423【答案】 【解析】解:函数 f(x)= ,不等式 f(x)4,当 x1 时,2x+44,解得1x0;当 x1 时, x+14 解得3x1精选高中模拟试卷第 16 页,共 16 页综上 x(3, 0)不等式的解集为:(3,0)24【答案】 【解析】解:(1)设圆的方程为 x2+y2+Dx+Ey+F=0圆的方程为 x2+y28y9=0(2)直线 CD 与圆 M 相切 O、D 分别是 AB、BR 的中点则 ODAR,CAB=DOB,ACO= COD,又CAO=ACO,DOB=COD又 OC=OB,所以BODCODOCD=OBD=90即 OCCD ,则直线 CD 与圆 M 相切 (其他方法亦可)