收藏 分享(赏)

鹤壁市高中2018-2019学年高二上学期第一次月考试卷数学.doc

上传人:爱你没说的 文档编号:8693121 上传时间:2019-07-07 格式:DOC 页数:14 大小:535KB
下载 相关 举报
鹤壁市高中2018-2019学年高二上学期第一次月考试卷数学.doc_第1页
第1页 / 共14页
鹤壁市高中2018-2019学年高二上学期第一次月考试卷数学.doc_第2页
第2页 / 共14页
鹤壁市高中2018-2019学年高二上学期第一次月考试卷数学.doc_第3页
第3页 / 共14页
鹤壁市高中2018-2019学年高二上学期第一次月考试卷数学.doc_第4页
第4页 / 共14页
鹤壁市高中2018-2019学年高二上学期第一次月考试卷数学.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 14 页鹤壁市高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 将 y=cos(2x+)的图象沿 x 轴向右平移 个单位后,得到一个奇函数的图象,则 的一个可能值为( )A B C D2 设集合 M=x|x2+3x+20 ,集合 ,则 MN=( )Ax|x2 Bx|x 1 Cx|x 1 Dx|x 23 以 的焦点为顶点,顶点为焦点的椭圆方程为( )A BC D4 某工厂生产某种产品的产量 x(吨)与相应的生产能耗 y(吨标准煤)有如表几组样本数据:x 3 4 5 6y 2.5 3 4 4.5据相关性检验,这组样本数据具

2、有线性相关关系,通过线性回归分析,求得其回归直线的斜率为 0.7,则这组样本数据的回归直线方程是( )A =0.7x+0.35 B =0.7x+1 C =0.7x+2.05 D =0.7x+0.455 设 m、n 是两条不同的直线, , 是三个不同的平面,给出下列四个命题:若 m,n,则 mn; 若 ,m ,则 m;若 m,n,则 mn; 若 ,m ,则 m;其中正确命题的序号是( )A B C D6 设集合 A=x|2x4,B= 2,1,2,4 ,则 AB=( )A1 ,2 B1,4 C1,2 D2 ,4精选高中模拟试卷第 2 页,共 14 页7 设 f(x)( ex e x)( ),则不等

3、式 f(x)f(1x)的解集为( )12x 112A(0,) B(, )12C( ,) D( ,0)12128 下列命题的说法错误的是( )A若复合命题 pq 为假命题,则 p,q 都是假命题B“x=1”是“ x23x+2=0”的充分不必要条件C对于命题 p:xR,x 2+x+10 则p:xR,x 2+x+10D命题“若 x23x+2=0,则 x=1”的逆否命题为:“若 x1,则 x23x+20”9 已知两条直线 ,其中为实数,当这两条直线的夹角在 内变动12:,:Lyay 0,12时,的取值范围是( )A B C D0, 3, 3,1,1,310已知向量 , , ,若 为实数, ,则 ( )

4、(1,2)a(,0)b(,4)c()/abcA B C1 D2141211已知向量 =(1,3), =(x,2),且 ,则 x=( )A B C D12已知双曲线 C: =1(a0,b0)的左、右焦点分别为 F1,F 2,过点 F1作直线 lx 轴交双曲线 C的渐近线于点 A,B 若以 AB 为直径的圆恰过点 F2,则该双曲线的离心率为( )A B C2 D二、填空题13由曲线 y=2x2,直线 y=4x2,直线 x=1 围成的封闭图形的面积为 14函数 f(x)=x 33x+1 在闭区间 3,0上的最大值、最小值分别是 15等差数列 的前项和为 ,若 ,则 等于_.nanS716a13S精选

5、高中模拟试卷第 3 页,共 14 页16设函数 有两个不同的极值点 , ,且对不等式32()(1)fxax1x212()0fxf恒成立,则实数的取值范围是 17直线 与抛物线 交于 , 两点,且与 轴负半轴相交,若 为坐标原点,则20yt6yABO面积的最大值为 .OAB【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.18在(x 2 ) 9的二项展开式中,常数项的值为 三、解答题19某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房第一年建新住房 am2,第二年到第四年,每年建设的新住房比前一年增长 100%,从第五年起,每

6、年建设的新住房都比前一年减少 am2;已知旧住房总面积为 32am2,每年拆除的数量相同()若 10 年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(),求前 n(1 n10 且 nN)年新建住房总面积 Sn20已知曲线 C1的极坐标方程为 =6cos,曲线 C2的极坐标方程为 = (pR),曲线 C1,C 2相交于A,B 两点()把曲线 C1,C 2的极坐标方程转化为直角坐标方程;()求弦 AB 的长度精选高中模拟试卷第 4 页,共 14 页21已知 =( sinx,cosx ), =(sinx,sinx ),设函数 f(x)= (1)写出函数 f(x

7、)的周期,并求函数 f(x)的单调递增区间;(2)求 f(x)在区间 , 上的最大值和最小值22已知函数 f(x)=lg(x 25x+6)和 的定义域分别是集合 A、B,(1)求集合 A,B;(2)求集合 AB,AB23函数 f(x)=sin( x+)( 0,| )的部分图象如图所示()求函数 f(x)的解析式()在ABC 中,角 A,B,C 所对的边分别是 a,b,c ,其中 ac,f(A)= ,且 a= ,b= ,求ABC 的面积精选高中模拟试卷第 5 页,共 14 页24长方体 ABCDA1B1C1D1中,AB=2,AA 1=AD=4,点 E 为 AB 中点(1)求证:BD 1平面 A1

8、DE;(2)求证:A 1D平面 ABD1精选高中模拟试卷第 6 页,共 14 页鹤壁市高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】解:将 y=cos(2x+)的图象沿 x 轴向右平移 个单位后,得到一个奇函数y=cos=cos(2x+ )的图象, =k+ ,即 =k + ,kZ,则 的一个可能值为 ,故选:D2 【答案】A【解析】解:集合 M=x|x2+3x+20=x|2x1,集合 =x|2x22=x|x2=x|x2,MN=x|x 2,故选 A【点评】本题考查集合的运算,解题时要认真审题,仔细解答3 【答案】D【解析】解:双曲线 的顶点

9、为(0,2 )和(0,2 ),焦点为(0,4)和(0,4)椭圆的焦点坐标是为(0,2 )和(0,2 ),顶点为(0,4)和(0,4)椭圆方程为 故选 D【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质4 【答案】A【解析】解:设回归直线方程 =0.7x+a,由样本数据可得, =4.5, =3.5因为回归直线经过点( , ),所以 3.5=0.74.5+a,解得 a=0.35故选 A【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键精选高中模拟试卷第 7 页,共 14 页5 【答案】B【解析】解:由 m、n 是两条不同的直线, , 是三个不同

10、的平面:在中:若 m,n,则由直线与平面垂直得 mn,故正确;在中:若 , ,则 ,m,由直线垂直于平面的性质定理得 m ,故正确;在中:若 m,n,则由直线与平面垂直的性质定理得 mn,故正确;在中:若 ,m ,则 m 或 m,故 错误故选:B6 【答案】A【解析】解:集合 A=x|2x4,B= 2,1,2,4 ,则 AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题7 【答案】【解析】选 C.f(x)的定义域为 xR ,由 f(x)(e x e x)( )得12x 112f(x)(e xe x )( )12 x 112(e xe x )( ) 12x 112(e x e x

11、)( )f(x ),12x 112f(x)在 R 上为偶函数,不等式 f(x)f(1x )等价于 |x|1 x|,即 x212xx 2, x ,12即不等式 f(x) f(1x )的解集为 x|x ,故选 C.128 【答案】A精选高中模拟试卷第 8 页,共 14 页【解析】解:A复合命题 pq 为假命题,则 p,q 至少有一个命题为假命题,因此不正确;B由 x23x+2=0,解得 x=1,2,因此“ x=1”是“x 23x+2=0”的充分不必要条件,正确;C对于命题 p:xR,x 2+x+10 则p:xR,x 2+x+10,正确;D命题“若 x23x+2=0,则 x=1”的逆否命题为:“若

12、x1,则 x23x+20”,正确故选:A9 【答案】C【解析】1111试题分析:由直线方程 ,可得直线的倾斜角为 ,又因为这两条直线的夹角在 ,所1:Lyx0450,12以直线 的倾斜角的取值范围是 且 ,所以直线的斜率为2:0Lax036且 ,即 或 ,故选 C.0tn3t60tan451a3考点:直线的倾斜角与斜率.10【答案】B 【解析】试题分析:因为 , ,所以 ,又因为 ,所以(1,2)a(,0)b()1,2ab()/abc,故选 B. 4160考点:1、向量的坐标运算;2、向量平行的性质.11【答案】C【解析】解: ,3x+2=0,解得 x= 故选:C【点评】本题考查了向量共线定理

13、、方程的解法,考查了推理能力与计算能力,属于中档题12【答案】D【解析】解:设 F1( c,0), F2(c,0),则 l 的方程为 x=c,双曲线的渐近线方程为 y= x,所以 A(c, c)B (c, c)AB 为直径的圆恰过点 F2F 1是这个圆的圆心AF 1=F1F2=2c精选高中模拟试卷第 9 页,共 14 页 c=2c,解得 b=2a离心率为 = =故选 D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式二、填空题13【答案】 【解析】解:由方程组 解得,x=1,y=2 故 A(1,2)如图,故所求图形的面积为 S= 1 1(2x 2)dx 1 1(4x2)dx= (4)=故

14、答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题精选高中模拟试卷第 10 页,共 14 页14【答案】 3,17 【解析】解:由 f(x)=3x 23=0,得 x=1,当 x1 时,f (x)0,当1 x 1 时, f(x)0,当 x1 时,f ( x)0,故 f(x)的极小值、极大值分别为 f( 1)=3 ,f(1)=1,而 f( 3)=17,f(0)=1,故函数 f(x)=x 33x+1 在3, 0上的最大值、最小值分别是 3、1715【答案】 26【解析】试题分析:由题意得,根据等差数列的性质,可得 ,由等差数列的求和3717762aa13137()2a

15、S考点:等差数列的性质和等差数列的和16【答案】 1(,2【解析】试题分析:因为 ,故得不等式 ,即12()0fxf32121120xaxax,由于2123 0xa,令 得方程 ,因 , 故faf224a,代入前面不等式,并化简得 ,解不等式得 或 ,123x 1a25012因此, 当 或 时, 不等式 成立,故答案为 . a12a120fxf(,2考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数 的到函数,令 考虑判别式大于零,根据韦达定理求出fx0f

16、x的值,代入不等式 ,得到关于的高次不等式,再利用“穿针引线”即可求得12,x12()f精选高中模拟试卷第 11 页,共 14 页实数的取值范围.11117【答案】 51239【解析】18【答案】 84 【解析】解:(x 2 ) 9的二项展开式的通项公式为 Tr+1= (1) rx183r,令 183r=0,求得 r=6,可得常数项的值为 T7= = =84,故答案为:84【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题三、解答题19【答案】 【解析】解:(I)10 年后新建住房总面积为 a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a设每年拆除的旧住房为

17、 xm2,则 42a+(32a10x)=232a,解得 x=a,即每年拆除的旧住房面积是 am2()设第 n 年新建住房面积为 a,则 an=所以当 1n4 时,S n=(2 n1) a;精选高中模拟试卷第 12 页,共 14 页当 5n10 时,S n=a+2a+4a+8a+7a+6a+(12 n)a=故【点评】本小题主要考查函数模型的选择与应用,属于基础题解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型20【答案】 【解析】解:()曲线 C2: (p R)表示直线

18、 y=x,曲线 C1: =6cos,即 2=6cos所以 x2+y2=6x 即(x3) 2+y2=9()圆心(3,0)到直线的距离 ,r=3 所以弦长 AB= = 弦 AB 的长度 【点评】本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题21【答案】 【解析】解:(1) =( sinx,cosx ), =(sinx, sinx),f(x)= = sin2x+sinxcosx = (1 cos2x)+ sin2x = cos2x+ sin2x =sin(2x ),函数的周期为 T= =,由 2k 2x 2k+ (k Z)解得 k

19、 xk+ ,f(x)的单调递增区间为k ,k+ ,(kZ);(2)由(1)知 f(x)=sin(2x ),精选高中模拟试卷第 13 页,共 14 页当 x, 时,2x , , sin(2x )1,故 f(x)在区间 , 上的最大值和最小值分别为 1 和 【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题22【答案】【解析】解:(1)由 x25x+60,即(x2)(x3)0,解得:x3 或 x2,即 A=x|x3 或 x2 ,由 g(x)= ,得到 10,当 x0 时,

20、整理得:4x0,即 x4;当 x0 时,整理得:4x0,无解,综上,不等式的解集为 0x4,即 B=x|0x4;(2)A=x|x 3 或 x2 ,B=x|0x4,AB=R,AB=x|0x 2 或 3x4 【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键23【答案】 【解析】解:()由图象可知,T=4 ( )=,= =2,又 x= 时,2 += +2k,得 =2k ,(k Z)又| ,= ,f(x)=sin(2x )6 分()由 f(A)= ,可得 sin(2A )= ,精选高中模拟试卷第 14 页,共 14 页ac,A 为锐角,2A ( , ),2A = ,得 A= ,由余弦定

21、理可得:a 2=b2+c22bccosA,可得:7=3+c 22 ,即:c 23c4=0,c0,解得 c=4ABC 的面积 S= bcsinA= = 12 分【点评】本题主要考查了余弦定理,三角形面积公式,由 y=Asin(x+)的部分图象确定其解析式等知识的应用,属于基本知识的考查24【答案】 【解析】证明:(1)连结 A1D,AD 1,A 1DAD1=O,连结 OE,长方体 ABCDA1B1C1D1中,ADD 1A1是矩形,O 是 AD1的中点,OEBD 1,OEBD 1,OE平面 ABD1,BD 1平面 ABD1,BD 1平面 A1DE(2)长方体 ABCDA1B1C1D1中,AB=2,AA 1=AD=4,点 E 为 AB 中点,ADD 1A1是正方形,A 1DAD 1,长方体 ABCDA1B1C1D1中,AB平面 ADD1A1,A 1DAB,又 ABAD1=A,A 1D平面 ABD1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报