1、精选高中模拟试卷第 1 页,共 16 页洮南市高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 定义运算: ,ab例如 12,则函数 sincofxx的值域为( )A 2, B , C 2,1 D1,2 已知函数 f(x)=x 2 ,则函数 y=f(x)的大致图象是( )A B C D3 实数 a=0.2 ,b=log 0.2,c= 的大小关系正确的是( )Aacb Babc Cba c Dbca4 已知 M=(x,y)|y=2 x,N=(x,y)|y=a,若 MN=,则实数 a 的取值范围为( )A(,1) B( ,1 C( ,0) D(,05 下
2、列函数中,在其定义域内既是奇函数又是减函数的是( )Ay=|x|(xR) By= (x0) Cy=x(xR ) Dy=x 3(xR)6 在等差数列a n中,3( a3+a5)+2 (a 7+a10+a13)=24,则此数列前 13 项的和是( )A13 B26 C52 D567 已知锐角ABC 的内角 A,B,C 的对边分别为 a,b,c ,23cos 2A+cos2A=0,a=7,c=6,则 b=( )A10 B9 C8 D58 某校在暑假组织社会实践活动,将 8 名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不
3、同的分配方案有( )A36 种 B38 种 C108 种 D114 种9 ABC 的外接圆圆心为 O,半径为 2, + + = ,且| |=| |, 在 方向上的投影为( )A3 B C D3精选高中模拟试卷第 2 页,共 16 页10已知 aR,复数 z=(a 2i)(1+i )(i 为虚数单位)在复平面内对应的点为 M,则“ a=0”是“ 点 M 在第四象限” 的( )A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件11已知全集 U=0,1,2,3,4,集合 M=2,3,4,N=0,1,4,则集合0 ,1可以表示为( )AMN B( UM)N CM ( UN)
4、D( UM)( UN)12如果随机变量 N ( 1, 2),且 P(31)=0.4 ,则 P(1)等于( )A0.1 B0.2 C0.3 D0.4二、填空题13已知双曲线 x2y2=1,点 F1,F 2为其两个焦点,点 P 为双曲线上一点,若 PF1PF2,则|PF 1|+|PF2|的值为 14已知奇函数 f(x)的定义域为 2,2 ,且在定义域上单调递减,则满足不等式 f(1m )+f(12m)0的实数 m 的取值范围是 15当 a0,a 1 时,函数 f(x)=log a(x1)+1 的图象恒过定点 A,若点 A 在直线 mxy+n=0 上,则 4m+2n的最小值是 16已知 x,y 满足
5、条件 ,则函数 z=2x+y 的最大值是 17已知集合 M=x|x|2,x R,N=xR|(x3)lnx 2=0,那么 MN= 18设 p:实数 x 满足不等式 x24ax+3a20(a0),q:实数 x 满足不等式 x2x60,已知p 是q 的必要非充分条件,则实数 a 的取值范围是 三、解答题19已知集合 A=x|1x3,集合 B=x|2mx1m(1)若 AB,求实数 m 的取值范围;(2)若 AB=,求实数 m 的取值范围精选高中模拟试卷第 3 页,共 16 页20提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度 v(单位:千米/小时)是车流密度 x(单
6、位:辆 /千米)的函数,当桥上的车流密度达到 200 辆/千米时,造成堵塞,此时车流速度为 0;当车流密度不超过 20 辆/千米时,车流速度为 60 千米/ 小时,研究表明:当 20x200 时,车流速度 v 是车流密度 x 的一次函数()当 0x200 时,求函数 v(x)的表达式;()当车流密度 x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到 1 辆/小时)21为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有 800 名学生参加了这次竞赛为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(
7、得分均为整数,满分为 100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中、的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于 85 分的学生能获奖,请估计在参加的 800 名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 的值 序号(i)分组(分数)组中值(Gi)频数(人数)频率(Fi)1 60,70) 65 0.102 70,80) 75 20 3 80,90) 85 0.204 90,100) 95 合计 50 1精选高中模拟试卷第 4 页,共 16 页2
8、2如图,过抛物线 C:x 2=2py(p0)的焦点 F 的直线交 C 于 M(x 1,y 1),N(x 2,y 2)两点,且x1x2=4()p 的值;()R,Q 是 C 上的两动点, R,Q 的纵坐标之和为 1,RQ 的垂直平分线交 y 轴于点 T,求 MNT 的面积的最小值精选高中模拟试卷第 5 页,共 16 页23(本题满分 12 分)已知向量 , , ,记函数3(sin,(icos)2axx )cosin,(csxxbR.baxf)((1)求函数 的单调递增区间;)(xf(2)在 中,角 的对边分别为 且满足 ,求 的取值范围.ABC, cb, Cacs2)(Bf【命题意图】本题考查了向
9、量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.24已知数列a n是等比数列, Sn为数列a n的前 n 项和,且 a3=3,S 3=9()求数列a n的通项公式;()设 bn=log2 ,且b n为递增数列,若 cn= ,求证:c 1+c2+c3+cn1精选高中模拟试卷第 6 页,共 16 页洮南市高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.2 【答案】A【解析】解:由题意可得,
10、函数的定义域 x0,并且可得函数为非奇非偶函数,满足 f(1)=f(1)=1,可排除 B、C 两个选项当 x0 时,t= = 在 x=e 时,t 有最小值为函数 y=f(x)=x 2 ,当 x0 时满足 y=f(x)e 2 0,因此,当 x0 时,函数图象恒在 x 轴上方,排除 D 选项故选 A3 【答案】C【解析】解:根据指数函数和对数函数的性质,知 log 0.20,00.2 1, ,即 0a1,b0,c 1,bac故选:C【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键4 【答案】D【解析】解:如图,精选高中模拟试卷第 7 页,共 16 页M=
11、(x,y)|y=2 x,N=(x,y)|y=a,若 MN=,则 a0实数 a 的取值范围为(,0 故选:D【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题5 【答案】D【解析】解:y=|x|(xR)是偶函数,不满足条件,y= (x0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(xR)是奇函数,在定义域上是增函数,不满足条件,y=x3( xR )奇函数,在定义域上是减函数,满足条件,故选:D6 【答案】B【解析】解:由等差数列的性质可得:a 3+a5=2a4,a 7+a13=2a10,代入已知可得 32a4+23a10=24,即 a4+a10=4,故数列的前 13
12、项之和 S13= = =26故选 B【点评】本题考查等差数列的性质和求和公式,涉及整体代入的思想,属中档题7 【答案】D【解析】解:23cos 2A+cos2A=23cos2A+2cos2A1=0,即 cos2A= ,A 为锐角,精选高中模拟试卷第 8 页,共 16 页cosA= ,又 a=7,c=6,根据余弦定理得:a 2=b2+c22bccosA,即 49=b2+36 b,解得:b=5 或 b= (舍去),则 b=5故选 D8 【答案】A【解析】解:由题意可得,有 2 种分配方案:甲部门要 2 个电脑特长学生,则有 3 种情况;英语成绩优秀学生的分配有 2 种可能;再从剩下的 3 个人中选
13、一人,有 3 种方法根据分步计数原理,共有 323=18 种分配方案甲部门要 1 个电脑特长学生,则方法有 3 种;英语成绩优秀学生的分配方法有 2 种;再从剩下的 3 个人种选 2 个人,方法有 33 种,共 323=18 种分配方案由分类计数原理,可得不同的分配方案共有 18+18=36 种,故选 A【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法9 【答案】C【解析】解:由题意, + + = ,得到 ,又| |=| |=| |,OAB 是等边三角形,所以四边形 OCAB 是边长为 2 的菱形,所以 在 方向上的投影为
14、 ACcos30=2 = ;故选 C精选高中模拟试卷第 9 页,共 16 页【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形 OBAC 的形状,利用向量解答10【答案】A【解析】解:若 a=0,则 z=2i(1+i)=22i ,点 M 在第四象限,是充分条件,若点 M 在第四象限,则 z=(a+2)+(a2)i ,推出2a2,推不出 a=0,不是必要条件;故选:A【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题11【答案】B【解析】解:全集 U=0,1,2,3,4,集合 M=2,3, 4,N=0,1,4, UM=0,1,N( UM)=0,1,故选:B【点评
15、】本题主要考查集合的子交并补运算,属于基础题12【答案】A【解析】解:如果随机变量 N( 1, 2),且 P(31)=0.4,P(31)=精选高中模拟试卷第 10 页,共 16 页P(1)= 【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位二、填空题13【答案】 【解析】解:PF 1PF 2,|PF 1|2+|PF2|2=|F1F2|2双曲线方程为 x2y2=1,a 2=b2=1,c 2=a2+b2=2,可得 F1F2=2|PF 1|2+|PF2|2=|F1F2|2=8又P 为双曲线 x2y2=1 上
16、一点,|PF 1|PF2|=2a=2,(|PF 1|PF2|) 2=4因此(|PF 1|+|PF2|) 2=2(|PF 1|2+|PF2|2) (|PF 1|PF2|) 2=12|PF 1|+|PF2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题14【答案】 , 【解析】解:函数奇函数 f(x)的定义域为 2,2 ,且在定义域上单调递减,不等式 f(1m)+f(1 2m)0 等价为 f(1m)f(1 2m)=f(2m1),即 ,即 ,得 m ,故答案为: , 精选高中模拟试卷第 11 页,共 1
17、6 页【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键注意定义域的限制15【答案】 2 【解析】解:整理函数解析式得 f(x)1=log a(x1),故可知函数 f(x)的图象恒过(2,1)即 A(2,1),故 2m+n=14m+2n2 =2 =2 当且仅当 4m=2n,即 2m=n,即 n= ,m= 时取等号4m+2n的最小值为 2 故答案为:216【答案】 4 【解析】解:由约束条件 作出可行域如图,化目标函数 z=2x+y 为 y=2x+z,由图可知,当直线 y=2x+z 过点 A( 2,0)时,直线 y=2x+z 在 y 轴上的截距最大,即 z 最大,此
18、时 z=2(2)+0=4 故答案为:4【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题精选高中模拟试卷第 12 页,共 16 页17【答案】 1,1 【解析】解:合 M=x|x|2, xR=x|2x2,N=xR|(x 3)lnx 2=0=3,1,1,则 MN=1,1,故答案为:1,1,【点评】本题主要考查集合的基本运算,比较基础18【答案】 【解析】解:x 24ax+3a20 (a0),( xa)( x3a)0,则 3axa,(a 0),由 x2x60 得2x 3,p 是q 的必要非充分条件,q 是 p 的必要非充分条件,即 ,即 a0,故答案为:三、解答题19【答案】
19、 【解析】解:(1)由 AB 知: ,得 m2,即实数 m 的取值范围为(, 2;(2)由 AB=,得:若 2m1m 即 m 时,B=,符合题意;精选高中模拟试卷第 13 页,共 16 页若 2m1m 即 m 时,需 或 ,得 0m 或,即 0m ,综上知 m0即实数 m 的取值范围为0,+)【点评】本题主要考查集合的包含关系判断及应用,交集及其运算解答(2)题时要分类讨论,以防错解或漏解20【答案】 【解析】解:() 由题意:当 0x20 时,v(x)=60;当 20x200 时,设 v(x)=ax+b再由已知得 ,解得故函数 v(x)的表达式为 ()依题并由()可得当 0x20 时, f(
20、x)为增函数,故当 x=20 时,其最大值为 6020=1200当 20x200 时,当且仅当 x=200x,即 x=100 时,等号成立所以,当 x=100 时,f(x)在区间(20,200上取得最大值 综上所述,当 x=100 时,f(x)在区间0,200上取得最大值为 ,即当车流密度为 100 辆/千米时,车流量可以达到最大值,最大值约为 3333 辆/ 小时答:() 函数 v(x)的表达式() 当车流密度为 100 辆/千米时,车流量可以达到最大值,最大值约为 3333 辆/ 小时精选高中模拟试卷第 14 页,共 16 页21【答案】 【解析】解:(1)由分布表可得频数为 50,故的数
21、值为 500.1=5,中的值为 =0.40,中的值为 500.2=10,中的值为 50(5+20+10)=15,中的值为 =0.30;(2)不低于 85 的概率 P= 0.20+0.30=0.40,获奖的人数大约为 8000.40=320;(3)该程序的功能是求平均数,S=650.10+750.40+850.20+950.30=82,800 名学生的平均分为 82 分22【答案】 【解析】解:()由题意设 MN:y=kx+ ,由 ,消去 y 得,x 22pkxp2=0(*)由题设,x 1,x 2是方程(*)的两实根, ,故 p=2;()设 R(x 3,y 3),Q(x 4,y 4),T(0,t
22、),T 在 RQ 的垂直平分线上,|TR|=|TQ|得 ,又 , ,即 4(y 3y4)=(y 3+y42t)(y 4y3)而 y3y4,4=y 3+y42t又y 3+y4=1, ,故 T(0, )因此, 由()得,x 1+x2=4k,x 1x2=4,= 因此,当 k=0 时,S MNT 有最小值 3精选高中模拟试卷第 15 页,共 16 页【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求” 的解题思想方法,考查了计算能力,是中档题23【答案】【解析】(1)由题意知, )cos)(incos(in23cosin)( xxxbaxf 3 分32sinco23si
23、nx令 , ,则可得 , .kkZ12512kxkZ 的单调递增区间为 ( ).5 分)(xf 125,24【答案】已知数列a n是等比数列, Sn为数列a n的前 n 项和,且 a3=3,S 3=9()求数列a n的通项公式;()设 bn=log2 ,且b n为递增数列,若 cn= ,求证:c 1+c2+c3+cn1【考点】数列的求和;等比数列的通项公式【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列【分析】()设数列a n的公比为 q,从而可得 3(1+ + )=9,从而解得;()讨论可知 a2n+3=3( ) 2n=3( ) 2n,从而可得 bn=log2 =2n,利用裂项求和法求和精选高中模拟试卷第 16 页,共 16 页【解析】解:()设数列a n的公比为 q,则 3(1+ + )=9,解得,q=1 或 q= ;故 an=3,或 an=3( ) n3;()证明:若 an=3,则 bn=0,与题意不符;故 a2n+3=3( ) 2n=3( ) 2n,故 bn=log2 =2n,故 cn= = ,故 c1+c2+c3+cn=1 + + =1 1【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用