收藏 分享(赏)

六年级数学数的认识知识点归纳.doc

上传人:精品资料 文档编号:8655043 上传时间:2019-07-07 格式:DOC 页数:6 大小:48.63KB
下载 相关 举报
六年级数学数的认识知识点归纳.doc_第1页
第1页 / 共6页
六年级数学数的认识知识点归纳.doc_第2页
第2页 / 共6页
六年级数学数的认识知识点归纳.doc_第3页
第3页 / 共6页
六年级数学数的认识知识点归纳.doc_第4页
第4页 / 共6页
六年级数学数的认识知识点归纳.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、1数的认识正整数 自然数整数 零 数 负整数分数,小数,百分数 整数1、整数的意义:自然数和 0 都是整数。2、自然数:我们在数物体的时候,用来表示物体个数的 1,2,3叫做自然数。一个物体也没有,用 0 表示。 0 是最小的自然数。3、计数单位:一(个) 、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是 10。这样的计数法叫做十进制计数法。4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。整数部分 亿级 万级 个级小数点小数部分数位 千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位 .十分位百分位千分位计数单位 千亿 百亿 十亿

2、 亿 千万 百万 十万 万 千 百 十一或个十分之一百分之一千分之一 数的改写一个较大的多位数,为了读写方便,常常把它改写成用 “万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。(1) 、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。(2) 、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是

3、13 亿。(3) 、取近似数的方法:四舍五入法:要省略的尾数的最高位上的数是 4 或者比 4 小,就把尾数去掉;2如果尾数的最高位上的数是 5 或者比 5 大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。 进一法:实际中,使用的材料都要比计算的结果多一些 ,因此,要保留近似数的时候,省略的位上是 4 或者比 4 小,都要向前一位进 1。这种取近似值的方法叫做进一法。去尾法:(4) 、大小比较比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最

4、高位上的数相同,就看下一位,哪一位上的数大那个数就大。比较小数的大小:先看它们的整数部分, ,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。5、倍数与因数(1)整除、倍数、约数:整数 a 除以整数 b(b 0) ,除得的商是整数而没有余数,我们就说 a 能被 b 整除,或者说 b 能整除 a 。如果数 a 能被数 b(b 0)整除,a 就叫做 b 的倍数,b 就叫做 a 的约数(或 a 的

5、因数) 。倍数和约数是相互依存的。例如因为 35 能被 7 整除,所以 35是 7 的倍数,7 是 35 的约数。一个数的约数的个数是有限的,其中最小的约数是 1,最大的约数是它本身。例如:10 的约数有 1、 2、5、10,其中最小的约数是 1,最大的约数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3 的倍数有:3、6、9、12其中最小的倍数是 3 ,没有最大的倍数。(2) 能被 2、3、5 整除的数的特征:能被 2 整除的数:个位上是 0、2、4、6、8 的数能被 3 整除的数:各位上数字的和能被 3 整除.能被 5 整除的数:个位上是“0”或是“5”的数。(3)奇偶性:能

6、被 2 整除的数叫做偶数。 不能被 2 整除的数叫做奇数。0 也是偶数。自然数按能否被 2 整除的特征可分为奇数和偶数。(4)质数与合数:一个数,如果只有 1 和它本身两个约数,这样的数叫做质数(或素数) ,100 以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、 59、61、67、71、73、79、83、89、97。一个数,如果除了 1 和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12 都是合数。31 不是质数也不是合数,非 0 自然数除了 1 外,不是质数就是合数。如果把非 0 自然数按其约数的个数的不同分类,可分为质

7、数、合数和1。(5)分解质因数:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如 15=35,3和 5 叫做 15 的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把 28 分解质因数 28=227(6)公约数与公倍数:几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如 12 的约数有1、2、3、4、6、12;18 的因数有 1、2、3、6、9、18。其中,1、2、3、6 是 12 和 1 8 的公因数,6 是它们的最大公因数。公因数只有 1 的两个数,叫做互质数,成互质关系的两个数,有下列

8、几种情况:* 1 和任何自然数互质。 * 相邻的两个自然数互质。* 两个不同的质数互质。 如果两个数是互质数,它们的最大公因数就是 1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如 2 的倍数有 2、4、6 、8、10、12、14、16、18 ,3 的倍数有 3、6、9、12、15、18 , 其中 6、12、18 是 2、3 的公倍数,6 是它们的最小公倍数。几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。 数的整除1、把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。2、求

9、几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数 1 为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。3、求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。4、成为互质关系的两个数:1 和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有 1 时,这两个合数互质。 小数1、小数的意义把整数 1 平均分成 10 份、100 份、1000 份 表示这样的的十分之几

10、、百分之几、千分之几 的数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之4几小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是 10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是 10。2、小数的分类纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如:41.7 、 25.3 、 0.23 都是有限小数。无限

11、小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 3.1415926 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12.109109 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 的循环节是“ 9 ” , 0.5454 的循环节是“ 54 ” 。纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 0.5656 混循环小数:循环节

12、不是从小数部分第一位开始的,叫做混循环小数。 3.1222 0.03333 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 简写作- 0.5302302 简写作-。 分数1、分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1” 平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。2、分数的分类真分数:分

13、子比分母小的分数叫做真分数。真分数小于 1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于 1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3、约分和通分 把一个分数化成同它相等但是分子、分母都比较小的5分数,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 约分和通分1、约分的方法:用分子和分母的公约数(1 除外)去除分子、分母;通常要除到得出最简分数为止。2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。 百分数1、百分数的意义:表示一个数

14、是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。 数的互化1、小数化成分数:原来有几位小数,就在 1 的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2、分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。3、一个最简分数,如果分母中除了 2 和 5 以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有 2 和 5 以外的质因数,这个分数就不能化成有限小数。4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向

15、左移动两位。6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 数的性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质 小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大 10 倍;小数点向右移动两位,原来的数就扩大 100 倍;小数点向右移动三位,原来的数就扩大 1000 倍2、小数点向左移动一位,原来的数就缩小 10 倍;小数点向左移动两位,原来的数就缩小 100 倍;小数点向左移动三位,原来的数就缩小 1000 倍3、小数点向左移或者向右移位数不够时,要用“0“补足位。(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外) ,分数的大小不变。(五)分数与除法的关系61、被除数除数= 被除数/除数2、因为零不能作除数,所以分数的分母不能为零。3、被除数 相当于分子,除数相当于分母。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报