收藏 分享(赏)

武穴市第三中学校2018-2019学年上学期高二数学12月月考试题含解析.doc

上传人:爱你没说的 文档编号:8628324 上传时间:2019-07-06 格式:DOC 页数:15 大小:468KB
下载 相关 举报
武穴市第三中学校2018-2019学年上学期高二数学12月月考试题含解析.doc_第1页
第1页 / 共15页
武穴市第三中学校2018-2019学年上学期高二数学12月月考试题含解析.doc_第2页
第2页 / 共15页
武穴市第三中学校2018-2019学年上学期高二数学12月月考试题含解析.doc_第3页
第3页 / 共15页
武穴市第三中学校2018-2019学年上学期高二数学12月月考试题含解析.doc_第4页
第4页 / 共15页
武穴市第三中学校2018-2019学年上学期高二数学12月月考试题含解析.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 15 页武穴市第三中学校 2018-2019 学年上学期高二数学 12 月月考试题含解析班级_ 姓名_ 分数_一、选择题1 过抛物线 y2=4x 的焦点 F 的直线交抛物线于 A,B 两点,点 O 是原点,若|AF|=3,则AOF 的面积为( )A B C D22 函数 y=a1x(a 0,a 1)的图象恒过定点 A,若点 A 在直线 mx+ny1=0(mn0)上,则 的最小值为( )A3 B4 C5 D63 某几何体的三视图如图所示,其中正视图是腰长为 2 的等腰三角形,俯视图是半径为1 的半圆,则其侧视图的面积是( )A B C1 D4 如图,已知平面 =

2、, 是直线 上的两点, 是平面 内的两点,且, , , 是平面 上的一动点,且有 ,则四棱锥 体积的最大值是( )A B C D5 某种细菌在培养过程中,每 20 分钟分裂一次(一个分裂为两个)经过 2 个小时,这种细菌由 1 个可繁殖成( )A512 个 B256 个 C128 个 D64 个6 5 名运动员争夺 3 项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )精选高中模拟试卷第 2 页,共 15 页A3 5 B C D5 37 己知 y=f(x)是定义在 R 上的奇函数,当 x0 时, f(x)=x+2,那么不等式 2f(x)10 的解集是( )A B 或C D 或8 某高

3、二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在 内的人数分别为( )90,1A20,2 B24,4 C25,2 D25,49 已知 ,若存在 ,使得 ,则 的()2)(0)xbgxaea0(1,)x00()gxba取值范围是( )A B C. D1,2,(2,0)10已知 f(x)=x 36x2+9xabc,abc,且 f(a)=f(b)=f(c)=0现给出如下结论:f(0)f (1) 0;f(0)f (1) 0;f(0)f (3) 0;f(0)f (3) 0其中正确结论的序号是( )A B C D11投篮测试中,每人投 3 次,

4、至少投中 2 次才能通过测试己知某同学每次投篮投中的概率为 0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A0.648 B0.432 C0.36 D0.31212设集合 A= x|32x13,集合 B 为函数 y=lg( x1)的定义域,则 AB=( )A(1,2) B1,2 C1,2) D(1,2二、填空题精选高中模拟试卷第 3 页,共 15 页13已知等比数列a n是递增数列, Sn是a n的前 n 项和若 a1,a 3是方程 x25x+4=0 的两个根,则 S6= 14满足 tan(x+ ) 的 x 的集合是 15将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点

5、数为 a,第二次朝上一面的点数为 b,则函数 y=ax22bx+1 在(,2 上为减函数的概率是 16已知数列 中, ,函数 在 处取得极值,则na1321() 4nnafxxx_.na17设向量 =(1,3), =(2,4), =( 1,2),若表示向量 4 ,4 2 ,2( ), 的有向线段首尾相接能构成四边形,则向量 的坐标是 18自圆 : 外一点 引该圆的一条切线,切点为 ,切线的长度等于点 到C22()()xy(,)PxyQP原点 的长,则 的最小值为( )OPQA B3 C4 D10 210【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算

6、求解能力、数形结合的思想三、解答题19设点 P 的坐标为(x3,y2)(1)在一个盒子中,放有标号为 1,2,3 的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为 x、y,求点 P 在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为 x、y,求点 P 在第三象限的概率精选高中模拟试卷第 4 页,共 15 页20已知函数 f(x)=a ,(1)若 a=1,求 f(0)的值;(2)探究 f(x)的单调性,并证明你的结论;(3)若函数 f(x)为奇函数,判断 |f(ax)|与 f(2)的大小21若

7、点(p,q),在|p|3,|q|3 中按均匀分布出现(1)点 M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程 x2+2pxq2+1=0 有两个实数根的概率22已知集合 P=x|2x23x+10,Q=x|(xa)(x a1)0(1)若 a=1,求 PQ;(2)若 xP 是 xQ 的充分条件,求实数 a 的取值范围精选高中模拟试卷第 5 页,共 15 页23已知 z 是复数,若 z+2i 为实数(i 为虚数单位),且 z4 为纯虚数(1)求复数 z;(2)若复数(z+mi) 2在复平面上对应的点在第四象限,求实数 m

8、的取值范围24如图,在四棱锥 PABCD 中,PD平面 ABCD,PD=DC=BC=1,AB=2,ABDC, BCD=90(1)求证:PCBC;(2)求点 A 到平面 PBC 的距离精选高中模拟试卷第 6 页,共 15 页武穴市第三中学校 2018-2019 学年上学期高二数学 12 月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:抛物线 y2=4x 的准线 l:x=1|AF|=3,点 A 到准线 l:x= 1 的距离为 31+x A=3x A=2,y A=2 ,AOF 的面积为 = 故选:B【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定 A 的坐标是解题的关键2

9、【答案】B【解析】解:函数 y=a1x(a 0,a 1)的图象恒过定点 A(1,1),点 A 在直线 mx+ny1=0(mn0)上,m+n=1 则 =(m+n) =2+ =4,当且仅当 m=n= 时取等号故选:B【点评】本题考查了“乘 1 法”与基本不等式的性质、指数函数的性质,属于基础题3 【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又正视图是腰长为 2 的等腰三角形,俯视图是半径为 1 的半圆,半圆锥的底面半径为 1,高为 ,即半圆锥的侧视图是一个两直角边长分别为 1 和 的直角三角形,故侧视图的面积是 ,故选:B【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关

10、键是得到该几何体的形状4 【答案】A精选高中模拟试卷第 7 页,共 15 页【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知: 是直角三角形,又 ,所以 。因为 ,所以 PB=2PA。作 于 M,则 。令 AM=t,则所以 即为四棱锥的高,又底面为直角梯形,所以故答案为:A5 【答案】D【解析】解:经过 2 个小时,总共分裂了 =6 次,则经过 2 小时,这种细菌能由 1 个繁殖到 26=64 个故选:D【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题6 【答案】D【解析】解:每一项冠军的情况都有 5 种,故 5 名学生争夺三项冠军,获得冠军的可能的种数是 53

11、,故选:D【点评】本题主要考查分步计数原理的应用,属于基础题7 【答案】B【解析】解:因为 y=f(x)为奇函数,所以当 x0 时,x0,根据题意得:f(x)= f(x)= x+2,即 f(x)=x2,当 x0 时,f(x)=x+2 ,代入所求不等式得:2(x+2)10,即 2x3,解得 x ,则原不等式的解集为 x ;当 x0 时,f(x)=x2,代入所求的不等式得:2(x2) 10,即 2x5,解得 x ,则原不等式的解集为 0x ,精选高中模拟试卷第 8 页,共 15 页综上,所求不等式的解集为x|x 或 0x 故选 B8 【答案】C【解析】考点:茎叶图,频率分布直方图9 【答案】A 【

12、解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值. 【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题利用导数研究函数 fx的单调性进一步求函数最值的步骤:确定函数 fx的定义域;对 fx求导;令 0fx,解不等式得的范围就是递增区间;令 0fx,解不等式得的范围就是递减区间;根据单调性求函数 f的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).10【答案】C精选高中模拟试卷第 9 页,共 15 页【解析】解:求导函数可得 f(x)=3x 212x+9=3(x1)( x3),abc,且

13、 f(a )=f(b)=f(c )=0 a1b3 c,设 f(x)= (x a)(xb)(x c)=x 3(a+b+c)x 2+(ab+ac+bc)xabc ,f( x) =x36x2+9xabc,a+b+c=6,ab+ac+bc=9,b+c=6a,bc=9a(6a) ,a24a0,0 a4,0 a1b 3c ,f( 0) 0,f(1)0,f(3)0,f( 0) f(1) 0,f(0)f(3)0故选:C11【答案】A【解析】解:由题意可知:同学 3 次测试满足 XB(3,0.6),该同学通过测试的概率为 =0.648故选:A12【答案】D【解析】解:由 A 中不等式变形得: 22x4,即1x2

14、,A=1, 2,由 B 中 y=lg( x1),得到 x10,即 x1,B=(1,+ ),则 AB=(1,2,故选:D二、填空题13【答案】63【解析】解:解方程 x25x+4=0,得 x1=1,x 2=4精选高中模拟试卷第 10 页,共 15 页因为数列a n是递增数列,且 a1,a 3是方程 x25x+4=0 的两个根,所以 a1=1,a 3=4设等比数列a n的公比为 q,则 ,所以 q=2则 故答案为 63【点评】本题考查了等比数列的通项公式,考查了等比数列的前 n 项和,是基础的计算题14【答案】 k , +k),kZ 【解析】解:由 tan(x+ ) 得 +kx+ +k,解得 k

15、x +k,故不等式的解集为k , +k),kZ,故答案为:k , +k),kZ,【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键15【答案】 【解析】解:由题意,函数 y=ax22bx+1 在(,2 上为减函数满足条件 第一次朝上一面的点数为 a,第二次朝上一面的点数为 b,a 取 1 时,b 可取 2,3,4,5,6;a 取 2 时,b 可取 4,5,6;a 取 3 时,b 可取 6,共 9 种(a,b)的取值共 36 种情况所求概率为 = 故答案为: 16【答案】 123nA【解析】精选高中模拟试卷第 11 页,共 15 页考点:1、利用导数求函数极值;2、根

16、据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如 的递推数列求通项往往用1(0,1)naqpq构造法,利用待定系数法构造成 的形式,再根据等比数例求出 的通项,进而1()nnamqnam得出 的通项公式.na17【答案】 (2, 6) 【解析】解:向量 4 ,4 2 ,2( ), 的有向线段首尾相接能构成四边形,则向量 =4 +4 2 +2( )=(6 +4 4 )= 6(1 , 3)+4(2,4)4( 1,2)=(2,6)=(2, 6),故答案为:(2, 6)【点评】本

17、题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题18【答案】D【解析】三、解答题19【答案】 【解析】解:(1)由已知得,基本事件(2,1),(2,0),(2,1),(1,1),(1,0),(1,1),(0,1),(0,0)(0,1)共 9 种4(分)设“点 P 在第二象限”为事件 A,事件 A 有(2,1),( 1,1)共 2 种精选高中模拟试卷第 12 页,共 15 页则 P(A)= 6(分)(2)设“点 P 在第三象限”为事件 B,则事件 B 满足 8(分) ,作出不等式组对应的平面区域如图:则 P(B)= = 12(分)20【答案】 【解析】解:(1)a=1

18、 时:f(0)=1 = ;(2)f(x)的定义域为 R任取 x1x2R 且 x1x 2则 f(x 1) f(x 2)=a a+ = y=2 x在 R 是单调递增且 x1x 202 x12 x2,2 x12x20,2x1+10,2 x2+10,f(x 1) f(x 2)0即 f(x 1)f (x 2),f(x)在 R 上单调递增(3)f(x)是奇函数f( x)= f(x),即 a =a+ ,精选高中模拟试卷第 13 页,共 15 页解得:a=1f(ax )=f(x)又f(x)在 R 上单调递增x2 或 x2 时:|f(x)| f(2),x=2 时:|f(x)|=f (2),2 x 2 时:|f

19、(x)| f(2)【点评】本题考查的是函数单调性、奇偶性等知识的综合问题在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力值得同学们体会和反思21【答案】 【解析】解:(1)根据题意,点(p,q),在|p|3,|q|3 中,即在如图的正方形区域,其中 p、q 都是整数的点有 66=36 个,点 M(x,y)横、纵坐标分别由掷骰子确定,即 x、y 都是整数,且 1x3,1y3,点 M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有 9 个点,所以点 M(x,y)落在上述区域的概率 P1=

20、;(2)|p| 3,|q|3 表示如图的正方形区域,易得其面积为 36;若方程 x2+2pxq2+1=0 有两个实数根,则有=(2p) 24( q2+1)0,解可得 p2+q21,为如图所示正方形中圆以外的区域,其面积为 36,即方程 x2+2pxq2+1=0 有两个实数根的概率,P 2= 【点评】本题考查几何概型、古典概型的计算,解题时注意区分两种概率的异同点22【答案】 精选高中模拟试卷第 14 页,共 15 页【解析】解:(1)当 a=1 时,Q=x|(x 1)(x2) 0=x|1x2则 PQ=1(2)aa+1,Q=x| (x a)(xa 1)0=x|axa+1xP 是 xQ 的充分条件

21、,PQ ,即实数 a 的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型23【答案】 【解析】解:(1)设 z=x+yi(x,y R)由 z+2i=x+(y+2)i 为实数,得 y+2=0,即 y=2由 z4=(x4) +yi 为纯虚数,得 x=4z=42i (2)(z+mi) 2=( m2+4m+12)+8(m2)i ,根据条件,可知 解得2 m2,实数 m 的取值范围是(2,2)【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题24【答案】 【解析】解:(1)证明:因为 PD平面 ABCD,BC 平面 ABCD,所以

22、 PDBC由BCD=90,得 CDBC,又 PDDC=D, PD、DC平面 PCD,所以 BC平面 PCD因为 PC平面 PCD,故 PCBC(2)(方法一)分别取 AB、PC 的中点 E、F,连 DE、DF,则:易证 DECB,DE平面 PBC,点 D、E 到平面 PBC 的距离相等精选高中模拟试卷第 15 页,共 15 页又点 A 到平面 PBC 的距离等于 E 到平面 PBC 的距离的 2 倍由(1)知:BC平面 PCD,所以平面 PBC平面 PCD 于 PC,因为 PD=DC,PF=FC,所以 DFPC,所以 DF平面 PBC 于 F易知 DF= ,故点 A 到平面 PBC 的距离等于 (方法二)等体积法:连接 AC设点 A 到平面 PBC 的距离为 h因为 ABDC ,BCD=90,所以ABC=90从而 AB=2,BC=1,得ABC 的面积 SABC =1由 PD平面 ABCD 及 PD=1,得三棱锥 PABC 的体积 因为 PD平面 ABCD,DC平面 ABCD,所以 PDDC又 PD=DC=1,所以 由 PC BC,BC=1,得PBC 的面积 由 VAPBC=VPABC, ,得 ,故点 A 到平面 PBC 的距离等于 【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报