1、精选高中模拟试卷第 1 页,共 13 页永年区高级中学 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 过点(1, 3)且平行于直线 x2y+3=0 的直线方程为( )Ax2y+7=0 B2x+y 1=0 Cx 2y5=0 D2x+y 5=02 在等比数列a n中,已知 a1=3,公比 q=2,则 a2和 a8的等比中项为( )A48 B48 C96 D 963 如图,棱长为的正方体 中, 是侧面对角线 上一点,若 1A,EF1,BCA1BEDF是菱形,则其在底面 上投影的四边形面积( )A B C. D123423244 函数 f(x)在 x=x0处导
2、数存在,若 p:f(x 0)=0:q:x=x 0是 f(x)的极值点,则( )Ap 是 q 的充分必要条件Bp 是 q 的充分条件,但不是 q 的必要条件Cp 是 q 的必要条件,但不是 q 的充分条件Dp 既不是 q 的充分条件,也不是 q 的必要条件5 设 ,abcR,且 ab,则( )A B 1ab C 2ab D 3ab6 如果函数 f(x)的图象关于原点对称,在区间上是减函数,且最小值为 3,那么 f(x)在区间上是( )A增函数且最小值为 3 B增函数且最大值为 3C减函数且最小值为3 D减函数且最大值为37 下列函数中,为奇函数的是( )Ay=x+1 By=x 2 Cy=2 x
3、Dy=x|x|8 若复数 在复平面内对应的点关于 轴对称,且 ,则复数 在复平面内对应的点在( 12,zy12iz12z)A第一象限 B第二象限 C第三象限 D第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力精选高中模拟试卷第 2 页,共 13 页9 A=x|x1,B=x|x 2 或 x0 ,则 AB=( )A(0,1) B( ,2)C(2, 0) D(,2)(0,1)10自圆 : 外一点 引该圆的一条切线,切点为 ,切线的长度等于点 到22(3)(4)xy(,)PxyQP原点 的长,则点 轨迹方程为( )OPA B C D8610y8610x6821
4、068210xy【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力11已知集合 , ,则满足条件 的集合23,xxR5,BxNACB的个数为 CA、 B、 C、 D、3412若函数 yfx的定义域是 1,206,则函数 1gxf的定义域是( )A 0,216 B 5 C ,206 D 1,207二、填空题13三角形 中, ,则三角形 的面积为 .BC23,60ACAB14设数列a n的前 n 项和为 Sn,已知数列S n是首项和公比都是 3 的等比数列,则a n的通项公式 an= 15已知 是第四象限角,且 sin(+ )= ,则 tan( )
5、= 16等比数列a n的前 n 项和为 Sn,已知 S3=a1+3a2,则公比 q= 17已知 f(x)= ,则 ff(0)= 18经过 A(3,1),且平行于 y 轴的直线方程为 三、解答题19(本小题满分 12 分)中央电视台电视公开课开讲了需要现场观众,先邀请甲、乙、丙、丁四所大学的 40 名学生参加,各大学邀请的学生如下表所示:大学 甲 乙 丙 丁人数 8 12 8 12精选高中模拟试卷第 3 页,共 13 页从这 40 名学生中按分层抽样的方式抽取 10 名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出 2 名学生发言,求这 2
6、 名学生来自同一所大学的概率.20某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房第一年建新住房 am2,第二年到第四年,每年建设的新住房比前一年增长 100%,从第五年起,每年建设的新住房都比前一年减少 am2;已知旧住房总面积为 32am2,每年拆除的数量相同()若 10 年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(),求前 n(1 n10 且 nN)年新建住房总面积 Sn21(本小题满分 12 分)已知在 中,角 所对的边分别为 且ABC, , cba.)3(sin)(sin( cbabBA()求角 的大小;() 若 , 的面积为
7、,求 .2,精选高中模拟试卷第 4 页,共 13 页22等比数列a n的各项均为正数,且 2a1+3a2=1,a 32=9a2a6,()求数列a n的通项公式;()设 bn=log3a1+log3a2+log3an,求数列 的前 n 项和23已知抛物线 C:x 2=2y 的焦点为 F()设抛物线上任一点 P(m ,n)求证:以 P 为切点与抛物线相切的方程是 mx=y+n;()若过动点 M(x 0,0)(x 00)的直线 l 与抛物线 C 相切,试判断直线 MF 与直线 l 的位置关系,并予以证明24如图所示,在正方体 ABCDA1B1C1D1中,E、F 分别是棱 DD1、C 1D1的中点()
8、证明:平面 ADC1B1平面 A1BE;()证明:B 1F平面 A1BE;()若正方体棱长为 1,求四面体 A1B1BE 的体积精选高中模拟试卷第 5 页,共 13 页精选高中模拟试卷第 6 页,共 13 页永年区高级中学 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:由题意可设所求的直线方程为 x2y+c=0过点(1,3 )代入可得1 6+c=0 则 c=7x2y+7=0故选 A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=02 【答案】B【解析】解:在等比数列a n中,a 1=3,公
9、比 q=2,a2=32=6,=384,a2和 a8的等比中项为 =48故选:B3 【答案】B【解析】试题分析:在棱长为的正方体 中, ,设 ,则 ,1DABC12BCADFx221x解得 ,即菱形 的边长为 ,则 在底面 上的投影四边形是底边24x1EF2341EABCD为 ,高为的平行四边形,其面积为 ,故选 B.33考点:平面图形的投影及其作法.4 【答案】C【解析】解:函数 f(x)=x 3的导数为 f(x)=3x 2,由 f(x 0)=0,得 x0=0,但此时函数 f(x)单调递增,无极值,充分性不成立根据极值的定义和性质,若 x=x0是 f(x)的极值点,则 f(x 0)=0 成立,
10、即必要性成立,故 p 是 q 的必要条件,但不是 q 的充分条件,故选:C精选高中模拟试卷第 7 页,共 13 页【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础5 【答案】D【解析】考点:不等式的恒等变换.6 【答案】D【解析】解:由奇函数的性质可知,若奇函数 f(x)在区间上是减函数,且最小值 3,则那么 f(x)在区间上为减函数,且有最大值为 3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础7 【答案】D【解析】解:由于 y=x+1 为非奇非偶函数,故排除 A;由于 y=x2为偶函数,故排除 B;由于 y=
11、2x为非奇非偶函数,故排除 C;由于 y=x|x|是奇函数,满足条件,故选:D【点评】本题主要考查函数的奇偶性的判断,属于基础题8 【答案】B【解析】9 【答案】D精选高中模拟试卷第 8 页,共 13 页【解析】解:A=( ,1),B=( ,2)(0,+ ),AB=( , 2)(0,1 ),故选:D【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键10【答案】D【解析】由切线性质知 ,所以 ,则由 ,得,PQC22PCQPO,化简得 ,即点 的轨迹方程,故选 D,222(3)(4)xyxy6810xy11【答案】D【解析】 , |(1)0,2AR|5,1,234NBxx , 可以
12、为 , , , CB13,41,2312【答案】B 【解析】二、填空题13【答案】 23【解析】试题分析:因为 中, ,由正弦定理得 , ,又ABC23,60BC23sinA1i2,即 ,所以 , , , BC09ABC132ASBC考点:正弦定理,三角形的面积【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和ab2正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答解三角形时三角形面积公式往往根据不同情况选用不同形式 , ,
13、 , 等等1sinCah1()2bcr4aR精选高中模拟试卷第 9 页,共 13 页14【答案】 【解析】解:数列S n是首项和公比都是 3 的等比数列,S n =3n故 a1=s1=3,n2 时,a n=Sn s n1 =3n3 n1 =23n1 ,故 an= 【点评】本题主要考查等比数列的通项公式,等比数列的前 n 项和公式,数列的前 n 项的和 Sn 与第 n 项 an的关系,属于中档题15【答案】 【解析】解: 是第四象限角, ,则 ,又 sin(+ ) = ,cos( + )= cos( )=sin(+ )= ,sin( )=cos(+ )= 则 tan( )= tan( )= =
14、故答案为: 16【答案】 2 【解析】解:设等比数列的公比为 q,由 S3=a1+3a2,当 q=1 时,上式显然不成立;当 q1 时,得 ,精选高中模拟试卷第 10 页,共 13 页即 q23q+2=0,解得:q=2 故答案为:2【点评】本题考查了等比数列的前 n 项和,考查了等比数列的通项公式,是基础的计算题17【答案】 1 【解析】解:f(0)=0 1=1,ff(0) =f(1)=21=1,故答案为:1【点评】本题考查了分段函数的简单应用18【答案】 x= 3 【解析】解:经过 A(3,1),且平行于 y 轴的直线方程为:x= 3故答案为:x=3三、解答题19【答案】(1)甲,乙,丙,丁
15、;(2) .25P【解析】试题分析:(1)从这 名学生中按照分层抽样的方式抽取 名学生,则各大学人数分别为甲,乙,丙,丁;4010(2)利用列举出从参加问卷调查的 名学生中随机抽取两名学生的方法共有 种,这来自同一所大学的取15法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这 40 名学生中按照分层抽样的方式抽取 10 名学生,则各大学人数分别为甲 2,乙 3,丙2,丁 3. (2)设乙中 3 人为 ,丁中 3 人为 ,从这 6 名学生中随机选出 2 名学生发言的结果为123,a123,b, , , , , , , , , ,1,a1,b12,a2,12,ba,32,ba3
16、1,, , , , ,共 15 种, 32b3,3,这 2 名同学来自同一所大学的结果共 6 种,所以所求概率为 .5P考点:1、分层抽样方法的应用;2、古典概型概率公式.20【答案】 【解析】解:(I)10 年后新建住房总面积为 a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a精选高中模拟试卷第 11 页,共 13 页设每年拆除的旧住房为 xm2,则 42a+(32a10x)=232a,解得 x=a,即每年拆除的旧住房面积是 am2()设第 n 年新建住房面积为 a,则 an=所以当 1n4 时,S n=(2 n1) a;当 5n10 时,S n=a+2a+4a+8a+7a+
17、6a+(12 n)a=故【点评】本小题主要考查函数模型的选择与应用,属于基础题解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型21【答案】解:()由正弦定理及已知条件有 , 即 . 3223cbabcacb22分由余弦定理得: ,又 ,故 . 6 分23cos2bcaA),0(A() 的面积为 , , , 8 分BCsin134bc又由() 及 得 , 10 分 223ab,a162由 解得 或 . 12 分,ccb22【答案】【解析】解:()设数列a n的公比为 q
18、,由 a32=9a2a6得 a32=9a42,所以 q2= 由条件可知各项均为正数,故 q= 由 2a1+3a2=1 得 2a1+3a1q=1,所以 a1= 故数列a n的通项式为 an= ()b n= + + =(1+2+ +n)= ,精选高中模拟试卷第 12 页,共 13 页故 = =2( )则 + + =2= ,所以数列 的前 n 项和为 【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前 n 项和的公式,会进行数列的求和运算,是一道中档题23【答案】 【解析】证明:()由抛物线 C:x 2=2y 得,y= x2,则 y=x,在点 P(m,n)切线的
19、斜率 k=m,切线方程是 yn=m(xm),即 yn=mxm2,又点 P(m,n)是抛物线上一点,m 2=2n,切线方程是 mx2n=yn,即 mx=y+n ()直线 MF 与直线 l 位置关系是垂直由()得,设切点为 P(m ,n),则切线 l 方程为 mx=y+n,切线 l 的斜率 k=m,点 M( ,0),又点 F(0, ),此时,k MF= = = = kk MF=m( )= 1,直线 MF直线 l 【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题24【答案】 【解析】()证明:ABCDA 1B1C1D1为正方体,B 1C1平面 ABB1A1;A 1B平面 ABB1A1,B 1C1A 1B精选高中模拟试卷第 13 页,共 13 页又A 1BAB 1,B 1C1AB1=B1,A 1B平面 ADC1B1,A 1B平面 A1BE,平面 ADC1B1平面 A1BE;()证明:连接 EF,EF ,且 EF= ,设 AB1A1B=O,则 B1OC 1D,且 ,EFB 1O,且 EF=B1O,四边形 B1OEF 为平行四边形B 1F OE又B 1F平面 A1BE,OE平面 A1BE,B 1F 平面 A1BE,()解: = = = =