收藏 分享(赏)

武陵区高级中学2018-2019学年高二上学期第一次月考试卷数学.doc

上传人:爱你没说的 文档编号:8628027 上传时间:2019-07-06 格式:DOC 页数:18 大小:537.50KB
下载 相关 举报
武陵区高级中学2018-2019学年高二上学期第一次月考试卷数学.doc_第1页
第1页 / 共18页
武陵区高级中学2018-2019学年高二上学期第一次月考试卷数学.doc_第2页
第2页 / 共18页
武陵区高级中学2018-2019学年高二上学期第一次月考试卷数学.doc_第3页
第3页 / 共18页
武陵区高级中学2018-2019学年高二上学期第一次月考试卷数学.doc_第4页
第4页 / 共18页
武陵区高级中学2018-2019学年高二上学期第一次月考试卷数学.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 18 页武陵区高级中学 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知函数 f(x)=3 1+|x| ,则使得 f(x)f(2x1)成立的 x 的取值范围是( )A B C( , ) D2 若数列a n的通项公式 an=5( ) 2n24( ) n1(nN *),a n的最大项为第 p 项,最小项为第 q 项,则 qp 等于( )A1 B2 C3 D43 设 D、E、F 分别是ABC 的三边 BC、CA、AB 上的点,且 =2 , =2 , =2 ,则与 ( )A互相垂直 B同向平行C反向平行 D既不平行也不垂直4

2、已知全集 U=R,集合 M=x|2x12和 N=x|x=2k1,k=1,2, 的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3 个 B2 个 C1 个 D无穷多个5 已知点 A(1,1),B(3,3),则线段 AB 的垂直平分线的方程是( )Ay= x+4 By=x Cy=x+4 Dy= x6 已知命题“如果 1a1,那么关于 x 的不等式(a 24)x 2+(a+2)x10 的解集为”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A0 个 B1 个 C2 个 D4 个7 设 f(x)在定义域内可导, y=f(x)的图象如图所示,则导函数 y=f(x)

3、的图象可能是( )精选高中模拟试卷第 2 页,共 18 页A B CD8 已知复数 z 满足 zi=2i,i 为虚数单位,则 z=( )A1 2i B1+2i C1 2i D1+2i9 方程(x 24) 2+(y 24) 2=0 表示的图形是( )A两个点 B四个点 C两条直线 D四条直线10一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为( )(A) 8( B ) 4(C) 3精选高中模拟试卷第 3 页,共 18 页(D) 4311过点(2,2)且与双曲线 y2=1 有公共渐近线的双曲线方程是( )A =1 B =1 C =1 D =112数列a n

4、的通项公式为 an=n+p,数列b n的通项公式为 bn=2n5,设 cn= ,若在数列c n中 c8c n(nN *,n8),则实数 p 的取值范围是( )A(11,25) B(12, 16 C(12,17) D16 ,17)二、填空题13设函数 f(x)= ,若 a=1,则 f(x)的最小值为 ;若 f(x)恰有 2 个零点,则实数 a 的取值范围是 14已知向量 、 满足 ,则| + |= 15一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 16已知角 终边上一点为 P( 1,2),则 值等于 17已知 满足 ,则 的取值范围为_.,xy41x23yx18在极坐标系

5、中,O 是极点,设点 A,B 的极坐标分别是(2 , ),(3, ),则 O 点到直线 AB的距离是 三、解答题19设函数 (1)若 x=1 是 f(x)的极大值点,求 a 的取值范围(2)当 a=0,b= 1 时,函数 F(x)=f(x)x 2 有唯一零点,求正数 的值精选高中模拟试卷第 4 页,共 18 页202008 年奥运会在中国举行,某商场预计 2008 年从 1 日起前 x 个月,顾客对某种奥运商品的需求总量p(x)件与月份 x 的近似关系是 且 x12),该商品的进价q(x)元与月份 x 的近似关系是 q(x)=150+2x,(x N*且 x12)(1)写出今年第 x 月的需求量

6、 f(x)件与月份 x 的函数关系式;(2)该商品每件的售价为 185 元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?21(本小题满分 12 分)已知等差数列 的前 项和为 ,且 , nanS901524S(1)求 的通项公式 和前 项和 ;nanaS(2)设 , 为数列 的前 项和,若不等式 对于任意的 恒成立,求实数 的1()bnbnt*nNt取值范围精选高中模拟试卷第 5 页,共 18 页22已知:函数 f(x)=log 2 ,g(x)=2ax+1a,又 h(x)=f(x)+g(x)(1)当 a=1 时,求证:h(x)在 x(1,+)上单调递增

7、,并证明函数 h(x)有两个零点;(2)若关于 x 的方程 f(x) =log2g(x)有两个不相等实数根,求 a 的取值范围23为了解某地区观众对大型综艺活动中国好声音的收视情况,随机抽取了 100 名观众进行调查,其中女性有 55 名下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数 9 10 11 12 13 14人数 10 18 22 25 20 5将收看该节目场次不低于 13 场的观众称为“歌迷”,已知“歌迷” 中有 10 名女性()根据已知条件完成下面的 22 列联表,并据此资料我们能否有 95%的把握认为“ 歌迷”与性别有关?非歌迷 歌迷 合计男女合计()将收看该

8、节目所有场次(14 场)的观众称为“超级歌迷 ”,已知“超级歌迷” 中有 2 名女性,若从“超级歌迷”中任意选取 2 人,求至少有 1 名女性观众的概率P(K 2k) 0.05 0.01k 3.841 6.635附:K 2= 精选高中模拟试卷第 6 页,共 18 页24椭圆 C: =1,(ab0)的离心率 ,点(2, )在 C 上(1)求椭圆 C 的方程;(2)直线 l 不过原点 O 且不平行于坐标轴,l 与 C 有两个交点 A,B ,线段 AB 的中点为 M证明:直线OM 的斜率与 l 的斜率的乘积为定值精选高中模拟试卷第 7 页,共 18 页武陵区高级中学 2018-2019 学年高二上学

9、期第一次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:函数 f(x)=3 1+|x| 为偶函数,当 x0 时,f(x)=3 1+x此时 y=31+x 为增函数,y= 为减函数,当 x0 时,f(x)为增函数,则当 x0 时, f(x)为减函数,f( x) f(2x 1),|x|2x 1|,x2(2x 1) 2,解得:x ,故选:A【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档2 【答案】A【解析】解:设 =t(0,1,a n=5( ) 2n24( ) n1(nN *),an=5t24t= ,an ,当且仅当 n=1 时,t=1 ,此时 an 取得最

10、大值;同理 n=2 时, an 取得最小值qp=21=1,故选:A【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题3 【答案】D【解析】解:如图所示,精选高中模拟试卷第 8 页,共 18 页ABC 中, =2 , =2 , =2 ,根据定比分点的向量式,得= = + ,= + , = + ,以上三式相加,得+ + = ,所以, 与 反向共线【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目4 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为 MN,又由 M=x|2x12得1x3,即 M=x|1x3,在此范围

11、内的奇数有 1 和 3所以集合 MN=1,3共有 2 个元素,故选 B5 【答案】A【解析】解:点 A(1,1), B(3,3),AB 的中点 C(2,2),kAB= =1,线段 AB 的垂直平分线的斜率 k=1,线段 AB 的垂直平分线的方程为:y2=(x2),整理,得:y=x+4精选高中模拟试卷第 9 页,共 18 页故选:A6 【答案】C【解析】解:若不等式(a 24)x 2+(a+2)x 10 的解集为 ”,则根据题意需分两种情况:当 a24=0 时,即 a=2,若 a=2 时,原不等式为 4x10,解得 x ,故舍去,若 a=2 时,原不等式为 10,无解,符合题意;当 a240 时

12、,即 a2,(a 24)x 2+(a+2)x10 的解集是空集, ,解得 ,综上得,实数 a 的取值范围是 则当1a1 时,命题为真命题,则命题的逆否命题为真命题,反之不成立,即逆命题为假命题,否命题也为假命题,故它的逆命题、否命题、逆否命题及原命题中是假命题的共有 2 个,故选:C【点评】本题考查了二次不等式的解法,四种命题真假关系的应用,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想7 【答案】D【解析】解:根据函数与导数的关系:可知,当 f(x)0 时,函数 f(x)单调递增;当 f(x)0 时,函数 f(x)单调递减结合函数 y=f(x)的图象可知,当 x0 时,函数

13、f(x)单调递减,则 f(x)0,排除选项 A,C当 x0 时,函数 f(x)先单调递增,则 f(x) 0,排除选项 B故选 D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题8 【答案】A精选高中模拟试卷第 10 页,共 18 页【解析】解:由 zi=2i 得, ,故选 A9 【答案】B【解析】解:方程(x 24) 2+(y 24) 2=0则 x24=0 并且 y24=0,即 ,解得: , , , ,得到 4 个点故选:B【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力10【答案】A【解析】 根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故

14、该几何体的体积等于 12323811【答案】A【解析】解:设所求双曲线方程为 y2=,把(2,2)代入方程 y2=,解得 =2由此可求得所求双曲线的方程为 故选 A【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用12【答案】C【解析】解:当 anbn 时,c n=an,当 anb n 时,c n=bn,c n 是 an,b n 中的较小者,an=n+p,a n是递减数列,bn=2n5,b n是递增数列,c8c n(n 8), c8 是 cn 的最大者,精选高中模拟试卷第 11 页,共 18 页则 n=1,2,3,7,8 时,c n 递增,n=8,9,10,时,c n 递减,n=1

15、,2,3,7 时,2 n5n+p 总成立,当 n=7 时,2 75 7+p,p11,n=9,10,11,时,2 n5 n+p 总成立,当 n=9 时,2 95 9+p,成立,p25,而 c8=a8 或 c8=b8,若 a8b8,即 23p8,p16,则 c8=a8=p8,p8b 7=275, p12,故 12p 16,若 a8b 8,即 p82 85,p 16,c8=b8=23,那么 c8c 9=a9,即 8p9,p 17,故 16p17,综上,12p17故选:C二、填空题13【答案】 a1 或 a2 【解析】解:当 a=1 时, f(x)= ,当 x1 时,f(x)=2 x1 为增函数,f

16、(x) 1,当 x1 时,f(x)=4(x 1)(x2)=4(x 23x+2)=4(x ) 21,当 1x 时,函数单调递减,当 x 时,函数单调递增,故当 x= 时,f(x) min=f( )=1,设 h(x)=2 xa,g(x)=4(xa)(x 2a)若在 x1 时,h(x)=与 x 轴有一个交点,所以 a0,并且当 x=1 时,h(1)=2a0,所以 0a 2,精选高中模拟试卷第 12 页,共 18 页而函数 g(x)=4(x a)(x 2a)有一个交点,所以 2a1,且 a1,所以 a1,若函数 h(x)=2 xa 在 x1 时,与 x 轴没有交点,则函数 g(x)=4(x a)(x

17、2a)有两个交点,当 a0 时,h(x)与 x 轴无交点,g(x)无交点,所以不满足题意(舍去),当 h(1)=2 a0 时,即 a2 时,g(x)的两个交点满足 x1=a,x 2=2a,都是满足题意的,综上所述 a 的取值范围是 a1,或 a214【答案】 5 【解析】解: =(1,0)+(2,4)= (3,4) = =5故答案为:5【点评】本题考查了向量的运算法则和模的计算公式,属于基础题15【答案】 【解析】解:由题意可得,2a,2b,2c 成等差数列2b=a+c4b 2=a2+2ac+c2b 2=a2c2联立可得,5c 2+2ac3a2=05e 2+2e3=00e1故答案为:【点评】本

18、题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题16【答案】 精选高中模拟试卷第 13 页,共 18 页【解析】解:角 终边上一点为 P( 1,2),所以 tan=2= = = 故答案为: 【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力17【答案】 2,6【解析】考点:简单的线性规划【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1) 表示点2xy与原点 的距离;(2) 表示点 与点 间的距离;(3) 可表示,xy0,

19、22xayb,xy,ab点 与 点连线的斜率;(4) 表示点 与点 连线的斜率.,18【答案】 精选高中模拟试卷第 14 页,共 18 页【解析】解:根据点 A,B 的极坐标分别是(2 , ),(3, ),可得 A、B 的直角坐标分别是(3, )、( , ),故 AB 的斜率为 ,故直线 AB 的方程为 y = (x 3),即 x+3 y12=0,所以 O 点到直线 AB 的距离是 = ,故答案为: 【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题三、解答题19【答案】 【解析】解:()f(x)的定义域为( 0,+ ), ,由 f(1)=0,得 b=1a

20、 若 a0,由 f(x)=0,得 x=1当 0x1 时,f(x)0,此时 f(x)单调递增;当 x1 时,f(x)0,此时 f(x)单调递减所以 x=1 是 f(x)的极大值点若 a0,由 f(x)=0 ,得 x=1,或 x= 因为 x=1 是 f(x)的极大值点,所以 1,解得 1a0综合:a 的取值范围是 a1()因为函数 F(x)=f (x)x 2 有唯一零点,即 x2lnxx=0 有唯一实数解,设 g(x)=x 2lnxx,则 令 g(x)=0,2x 2x1=0因为 0,所以=1+80,方程有两异号根设为 x10,x 20因为 x0,所以 x1 应舍去当 x(0,x 2)时,g(x)

21、0,g(x)在(0,x 2)上单调递减;精选高中模拟试卷第 15 页,共 18 页当 x(x 2,+)时,g (x)0,g(x)在(x 2,+)单调递增当 x=x2 时,g ( x2)=0,g(x)取最小值 g(x 2)因为 g(x)=0 有唯一解,所以 g(x 2)=0,则 即因为 0,所以 2lnx2+x21=0(*)设函数 h(x)=2lnx+x 1,因为当 x0 时,h(x)是增函数,所以 h(x)=0 至多有一解因为 h(1)=0,所以方程(*)的解为 x2=1,代入方程组解得 =1【点评】本题考查函数的单调性、极值、零点等知识点的应用,解题时要认真审题,仔细解答,注意合理地进行等价

22、转化20【答案】 【解析】解:(1)当 x=1 时,f (1)=p(1)=37.当 2x12 时,且 x12)验证 x=1 符合 f(x)= 3x2+40x,f(x)=3x 2+40x(xN*且 x12)该商场预计销售该商品的月利润为g(x)=( 3x2+40x)(185150 2x)=6x 3185x2+1400x,(xN*且 x12),令 h(x)=6x 3185x2+1400x(1x12),h(x)=18x 2370x+1400,令 h(x)=0,解得 (舍去)0;当 5x 12 时,h (x)0当 x=5 时,h(x)取最大值 h(5)=3125 max=g(5)=3125(元)综上,

23、5 月份的月利润最大是 3125 元.【点评】本题考查利用函数知识解决应用题的有关知识新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键同时要熟练地利用导数的知识解决函数的求最值问题21【答案】【解析】【命题意图】本题考查等差数列通项与前 项和、数列求和、不等式性质等基础知识,意在考查逻n辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用精选高中模拟试卷第 16 页,共 18 页22【答案】 【解析】解:(1)证明:h(x)=f(x)+g(x)=log 2 +2x,=log2(1 )+2x;y=1 在(1,+)上是增函数,故 y=log2(1 )在

24、(1,+)上是增函数;又y=2x 在(1,+ )上是增函数;h(x)在 x(1,+)上单调递增;同理可证,h(x)在(,1)上单调递增;而 h(1.1)=log 221+2.20,h(2)=log 23+40;故 h(x)在(1,+)上有且仅有一个零点,同理可证 h(x)在(,1)上有且仅有一个零点,故函数 h(x)有两个零点;(2)由题意,关于 x 的方程 f(x)=log 2g(x)有两个不相等实数根可化为精选高中模拟试卷第 17 页,共 18 页1 =2ax+1a 在(,1)(1,+)上有两个不相等实数根;故 a= ;结合函数 a= 的图象可得,a0;即1a0【点评】本题考查了复合函数的

25、单调性的证明与函数零点的判断,属于中档题23【答案】 【解析】解:()由统计表可知,在抽取的 100 人中,“歌迷” 有 25 人,从而完成 22 列联表如下:非歌迷 歌迷 合计男 30 15 45女 45 10 55合计 75 25 100将 22 列联表中的数据代入公式计算,得:精选高中模拟试卷第 18 页,共 18 页K2= = 3.030因为 3.0303.841,所以我们没有 95%的把握认为“ 歌迷”与性别有关()由统计表可知,“超级歌迷”有 5 人,从而一切可能结果所组成的基本事件空间为 =(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,

26、b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)其中 ai 表示男性, i=1,2,3,b i 表示女性, i=1,2 由 10 个等可能的基本事件组成 用 A 表示“任选 2 人中,至少有 1 个是女性”这一事件,则 A=(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) ,事件 A 由 7 个基本事件组成P(A)= 12【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大

27、,是高考中的易考题型24【答案】 【解析】解:(1)椭圆 C: =1,(ab0)的离心率 ,点(2, )在 C 上,可得, ,解得 a2=8,b 2=4,所求椭圆 C 方程为: (2)设直线 l:y=kx+b ,(k 0,b0),A(x 1,y 1),B(x 2,y 2),M (x M,y M),把直线 y=kx+b 代入 可得(2k 2+1)x 2+4kbx+2b28=0,故 xM= = ,y M=kxM+b= ,于是在 OM 的斜率为:K OM= = ,即 KOMk= 直线 OM 的斜率与 l 的斜率的乘积为定值【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报