1、精选高中模拟试卷第 1 页,共 18 页建邺区高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知直线 ax+by+c=0 与圆 O:x 2+y2=1 相交于 A,B 两点,且 ,则 的值是( )A B C D02 若函数 在 上是单调函数,则 的取值范围是( ) 2()48fxk5,kA B C D,06,64,4064,3 一个算法的程序框图如图所示,若运行该程序后输出的结果为 ,则判断框中应填入的条件是( )Ai5? Bi4? Ci4? Di5?4 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A1:2:3 B2
2、 :3:4 C3:2:4 D3:1:25 已知曲线 的焦点为 ,过点 的直线与曲线 交于 两点,且 ,则:yxF,PQ20FQ的面积等于( )OPQA B C D23246 如图给出的是计算 的值的一个流程图,其中判断框内应填入的条件是( )精选高中模拟试卷第 2 页,共 18 页Ai21 Bi11 Ci21 Di117 下列各组表示同一函数的是( )Ay= 与 y=( ) 2 By=lgx 2与 y=2lgxCy=1+ 与 y=1+ Dy=x 21(xR )与 y=x21(xN)8 已知向量 与 的夹角为 60,| |=2,| |=6,则 2 在 方向上的投影为( )A1 B2 C3 D49
3、 若复数(2+ai) 2(aR)是实数(i 是虚数单位),则实数 a 的值为( )A2 B2 C0 D210某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为( )A560m 3 B540m 3 C520m 3 D500m 311如图,该程序运行后输出的结果为( )精选高中模拟试卷第 3 页,共 18 页A7 B15 C31 D6312在张邱建算经中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,
4、该女子到第 10 日时,大约已经完成三十日织布总量的( )A33% B49% C62% D88%二、填空题13给出下列四个命题:函数 y=|x|与函数 表示同一个函数;奇函数的图象一定通过直角坐标系的原点;函数 y=3x2+1 的图象可由 y=3x2的图象向上平移 1 个单位得到;若函数 f(x)的定义域为0,2 ,则函数 f(2x)的定义域为 0,4;设函数 f(x)是在区间a,b上图象连续的函数,且 f(a)f(b)0,则方程 f(x)=0 在区间a ,b上至少有一实根;其中正确命题的序号是 (填上所有正确命题的序号)14在数列 中,则实数 a= ,b= 15在复平面内,记复数 +i 对应
5、的向量为 ,若向量 饶坐标原点逆时针旋转 60得到向量 所对应的复数为 16( 2) 7的展开式中, x2的系数是 17下列命题:集合 的子集个数有 16 个;,abcd定义在 上的奇函数 必满足 ;R()fx(0)f 既不是奇函数又不是偶函数;2()1)fx精选高中模拟试卷第 4 页,共 18 页 , , ,从集合 到集合 的对应关系 是映射;ARB1:|fxABf 在定义域上是减函数1()fx其中真命题的序号是 18以点(1,3)和(5,1 )为端点的线段的中垂线的方程是 三、解答题19(本小题满分 13 分)在四棱锥 中,底面 是直角梯形, , , ,PABCDAB/ABDC22AD3(
6、)在棱 上确定一点 ,使得 平面 ;E/CP()若 , ,求直线 与平面 所成角的大小6PABCD20(本小题满分 12 分)在等比数列 中, na39,2S(1)求数列 的通项公式;(2)设 ,且 为递增数列,若 ,求证: 216lognnbnb1ncbA12314ncc精选高中模拟试卷第 5 页,共 18 页21已知 a0,a 1,命题 p:“函数 f(x)=a x在(0,+)上单调递减”,命题 q:“ 关于 x 的不等式 x22ax+0 对一切的 xR 恒成立”,若 pq 为假命题,pq 为真命题,求实数 a 的取值范围22如图,椭圆 C1: 的离心率为 ,x 轴被曲线 C2:y=x 2
7、b 截得的线段长等于椭圆C1的短轴长C 2与 y 轴的交点为 M,过点 M 的两条互相垂直的直线 l1,l 2分别交抛物线于 A、B 两点,交椭圆于 D、E 两点,()求 C1、C 2的方程;()记MAB ,MDE 的面积分别为 S1、S 2,若 ,求直线 AB 的方程精选高中模拟试卷第 6 页,共 18 页23(本小题满分 10 分)选修 4-5:不等式选讲已知函数 , .|1|2|)(xxf xg)((1)解不等式 ;)((2)对任意的实数,不等式 恒成立,求实数 的最小值.111)(2Rmf m24已知 y=f(x)是 R 上的偶函数, x0 时,f(x)=x 22x(1)当 x0 时,
8、求 f(x)的解析式(2)作出函数 f(x)的图象,并指出其单调区间精选高中模拟试卷第 7 页,共 18 页建邺区高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:取 AB 的中点 C,连接 OC, ,则 AC= ,OA=1sin =sinAOC= =所以:AOB=120 则 =11cos120= 故选 A2 【答案】A【解析】试题分析:根据 可知,函数图象为开口向上的抛物线,对称轴为 ,所以若函数248fxk 8kx在区间 上为单调函数,则应满足: 或 ,所以 或 。故选 A。fx5,85k840k6考点:二次函数的图象及性质(单调性)
9、。3 【答案】 B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1 ,s=满足条件,i=3,sum=2 ,s= +精选高中模拟试卷第 8 页,共 18 页满足条件,i=4,sum=3 ,s= + +满足条件,i=5,sum=4 ,s= + + + =1 + + + = 由题意,此时不满足条件,退出循环,输出 s 的 ,则判断框中应填入的条件是 i4故选:B【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件 循环的条件 变量的赋值变量的输出其中前两点考试的概率更大此种题型的
10、易忽略点是:不能准确理解流程图的含义而导致错误4 【答案】D【解析】解:设球的半径为 R,则圆柱、圆锥的底面半径也为 R,高为 2R,则球的体积 V 球 =圆柱的体积 V 圆柱 =2R3圆锥的体积 V 圆锥 =故圆柱、圆锥、球的体积的比为 2R3: : =3:1:2故选 D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键5 【答案】C【解析】精选高中模拟试卷第 9 页,共 18 页 ,12(,)(1,)(0,xyxy ,20联立可得 ,8m 212112()43yyy
11、 2SOF(由 ,得 或 )120y12y12y考点:抛物线的性质6 【答案】D【解析】解:S=并由流程图中 S=S+故循环的初值为 1终值为 10、步长为 1故经过 10 次循环才能算出 S= 的值,故 i10,应不满足条件,继续循环当 i11,应满足条件,退出循环填入“ i11”故选 D7 【答案】C【解析】解:Ay =|x|,定义域为 R,y=( ) 2=x,定义域为x|x0,定义域不同,不能表示同一函数By=lgx 2,的定义域为 x|x0,y=2lgx 的定义域为x|x0 ,所以两个函数的定义域不同,所以不能表示同一函数C两个函数的定义域都为x|x 0,对应法则相同,能表示同一函数D
12、两个函数的定义域不同,不能表示同一函数故选:C【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数精选高中模拟试卷第 10 页,共 18 页8 【答案】A【解析】解:向量 与 的夹角为 60,| |=2,| |=6,( 2 ) =2 =22262cos60=2,2 在 方向上的投影为 = 故选:A【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目9 【答案】C【解析】解:复数(2+ai) 2=4a 2+4ai 是实数,4a=0,解得 a=0故选:C【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题
13、10【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为 y 轴建立直角坐标系,易得抛物线过点(3,1 ),其方程为 y= ,那么正(主)视图上部分抛物线与矩形围成的部分面积 S1=2 =4,下部分矩形面积 S2=24,故挖掘的总土方数为 V=(S 1+S2)h=2820=560m 3故选:A【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题11【答案】如图,该程序运行后输出的结果为( )D【解析】解:因为 A=1,s=1判断框内的条件 15 成立,执行 s=21+1=3,i=1+1=2;判断框内的条件 25 成立,执行 s=23+1=7,i=2+1
14、=3;判断框内的条件 35 成立,执行 s=27+1=15,i=3+1=4;判断框内的条件 45 成立,执行 s=215+1=31,i=4+1=5;判断框内的条件 55 成立,执行 s=231+1=63,i=5+1=6;精选高中模拟试卷第 11 页,共 18 页此时 65,判断框内的条件不成立,应执行否路径输出 63,所以输入的 m 值应是 5故答案为 5【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束12【答案】B【解析】二、填空题13【答案】 【解析】解:函数 y=|x|,(xR )与函数 ,(x0)的定义域不同,它们不表示同一个函
15、数;错;奇函数 y= ,它的图象不通过直角坐标系的原点;故错;函数 y=3( x1) 2的图象可由 y=3x2的图象向右平移 1 个单位得到;正确;若函数 f(x)的定义域为0,2 ,则函数 f(2x)的定义域由 02x2,0x1,它的定义域为:0,1;故错;设函数 f(x)是在区间ab上图象连续的函数,且 f(a)f(b)0,则方程 f(x)=0 在区间a ,b上至少有一实根故正确;故答案为:14【答案】a= ,b= 【解析】解:由 5,10,17,a b,37 知,ab=26,由 3,8,a+b,24,35 知,a+b=15,解得,a= ,b= ;精选高中模拟试卷第 12 页,共 18 页
16、故答案为: , 【点评】本题考查了数列的性质的判断与归纳法的应用15【答案】 2i 【解析】解:向量 饶坐标原点逆时针旋转 60得到向量所对应的复数为( +i)(cos60+isin60 )=( +i)( )=2i,故答案为 2i【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转 60得到向量对应的复数为( +i)(cos60+isin60),是解题的关键16【答案】280 解: ( 2) 7的展开式的通项为 = 由 ,得 r=3x2的系数是 故答案为:280 17【答案】【解析】试题分析:子集的个数是 ,故正确.根据奇函数的定义知正确.对于 为偶函数,故错2n 241fx误.对于
17、没有对应,故不是映射.对于减区间要分成两段,故错误.0x考点:子集,函数的奇偶性与单调性【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是 个;对于n奇函数来说,如果在 处有定义,那么一定有 ,偶函数没有这个性质;函数的奇偶性判断主要x0f根据定义 ,注意判断定义域是否关于原点对称.映射必须集合 中任意一个,fffx A元素在集合 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1B18【答案】 xy 2=0 【解析】解:直线 AB 的斜率 kAB=1,所以线段 AB 的中垂线得斜率 k=1,又线段 AB 的中点为(3,1),所以
18、线段 AB 的中垂线得方程为 y1=x3 即 xy2=0,精选高中模拟试卷第 13 页,共 18 页故答案为 xy2=0【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的 2 个端点距离相等)来求中垂线的方程三、解答题19【答案】 【解析】解: ()当 时, 平面 .13PEB/CPAD设 为 上一点,且 ,连结 、 、 ,FAFAFE那么 , ./EB , , , , DC13/EDC/CFD又 平面 , 平面 , 平面 (5 分)PAFPA/PA()设 、 分别为 、 的中点,连结 、 、 ,OGBOG , ,易知 , 平面 , BG
19、BBOP又 , , 平面 (8 分)建立空间直角坐标系 (如图),其中 轴 , 轴 ,则有 , ,xyzx/Cy/(1,0)A(2)B由 知 (9 分)(1,20)C222(6)PA(0,2)设平面 的法向量为 , ,B(,n1,PBur则 即 ,取 .n02xyz()n设直线 与平面 所成角为 , ,则 ,PAC1,2Aur |3sin|co,2APn , 直线 与平面 所成角为 . (13 分)3BPD3精选高中模拟试卷第 14 页,共 18 页ABCDGOPEFxyz20【答案】(1) ;(2)证明见解析.1362nnnaA或【解析】试题分析:(1)将 化为 ,联立方程组,求出 ,可得
20、;39,S1,aq1,aq13622nnnaA或(2)由于 为递增数列,所以取 ,化简得 ,nb162nn2nb,其前项和为 .14ncA 414精选高中模拟试卷第 15 页,共 18 页考点:数列与裂项求和法121【答案】 【解析】解:若 p 为真,则 0a1;若 q 为真,则=4a 210,得 ,又 a0,a1, 因为 pq 为假命题,pq 为真命题,所以 p,q 中必有一个为真,且另一个为假当 p 为真,q 为假时,由 ;当 p 为假,q 为真时, 无解 综上,a 的取值范围是 精选高中模拟试卷第 16 页,共 18 页【点评】1求解本题时,应注意大前提“a0,a 1”,a 的取值范围是
21、在此条件下进行的22【答案】 【解析】解:()椭圆 C1: 的离心率为 ,a 2=2b2,令 x2b=0 可得 x= ,x 轴被曲线 C2:y=x 2b 截得的线段长等于椭圆 C1的短轴长,2 =2b,b=1,C 1、C 2的方程分别为 ,y=x 21; ()设直线 MA 的斜率为 k1,直线 MA 的方程为 y=k1x1 与 y=x21 联立得 x2k1x=0x=0 或 x=k1,A(k 1,k 121)同理可得 B(k 2,k 221)S 1= |MA|MB|= |k1|k2|y=k1x1 与椭圆方程联立,可得 D( ),同理可得 E( ) S 2= |MD|ME|= 若 则 解得 或直线
22、 AB 的方程为 或 精选高中模拟试卷第 17 页,共 18 页【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键23【答案】(1) 或 ;(2).13|x3【解析】试题解析:(1)由题意不等式 可化为 ,)(xgf|1|2|x当 时, ,解得 ,即 ;x1)2(x3当 时, ,解得 ,即 ;1当 时, ,解得 ,即 (4 分)2综上所述,不等式 的解集为 或 . (5 分))(gf|x(2)由不等式 可得 ,mxxf2)( m|1|2|分离参数 ,得 ,m|1|ax)(x , ,故实数 的最小值是. (10 分)3)(1| x考点:绝对值三角不等式;绝对值不等式的解法124【答案】 【解析】解:(1)设 x0,则x0,x 0 时,f ( x)=x 22x精选高中模拟试卷第 18 页,共 18 页f( x)=( x) 22(x)=x 2+2xy=f(x)是 R 上的偶函数f( x) =f(x)=x 2+2x(2)单增区间(1,0)和( 1,+);单减区间( , 1)和(0, 1)【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强