收藏 分享(赏)

头屯河区高中2018-2019学年高二上学期第一次月考试卷数学.doc

上传人:爱你没说的 文档编号:8627863 上传时间:2019-07-06 格式:DOC 页数:16 大小:577.50KB
下载 相关 举报
头屯河区高中2018-2019学年高二上学期第一次月考试卷数学.doc_第1页
第1页 / 共16页
头屯河区高中2018-2019学年高二上学期第一次月考试卷数学.doc_第2页
第2页 / 共16页
头屯河区高中2018-2019学年高二上学期第一次月考试卷数学.doc_第3页
第3页 / 共16页
头屯河区高中2018-2019学年高二上学期第一次月考试卷数学.doc_第4页
第4页 / 共16页
头屯河区高中2018-2019学年高二上学期第一次月考试卷数学.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 16 页头屯河区高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 若 ,则 1sin()34cos(2)3A、 B、 C、 D、7814782 设 0ab 且 a+b=1,则下列四数中最大的是( )Aa 2+b2B2ab Ca D3 已知数列a n满足 log3an+1=log3an+1(nN *),且 a2+a4+a6=9,则 log (a 5+a7+a9)的值是( )A B5 C5 D4 若双曲线 =1(a 0,b0)的渐近线与圆(x2) 2+y2=2 相切,则此双曲线的离心率等于( )A B C D25 已知在

2、R 上可导的函数 f(x)的图象如图所示,则不等式 f(x)f (x)0 的解集为( )A(2 ,0) B( , 2)(1,0) C( ,2)(0,+) D(2,1)(0,+)6 直线 x+y1=0 与 2x+2y+3=0 的距离是( )A B C D7 如图,四面体 OABC 的三条棱 OA,OB,OC 两两垂直,OA=OB=2,OC=3,D 为四面体 OABC 外一点给出下列命题不存在点 D,使四面体 ABCD 有三个面是直角三角形不存在点 D,使四面体 ABCD 是正三棱锥存在点 D,使 CD 与 AB 垂直并且相等存在无数个点 D,使点 O 在四面体 ABCD 的外接球面上精选高中模拟

3、试卷第 2 页,共 16 页其中真命题的序号是( )A B C D8 若直线 上存在点 满足约束条件2yx(,)y则实数 的最大值为 30,xmA、 B、 C、 D、13229 在ABC 中,AB 边上的中线 CO=2,若动点 P 满足=(sin 2) +(cos 2) ( R),则( + ) 的最 小值是( )A1 B1 C 2 D010ABC 的外接圆圆心为 O,半径为 2, + + = ,且| |=| |, 在 方向上的投影为( )A3 B C D311函数 y=|a|x (a 0 且 a1)的图象可能是( )A B C D12如图所示,函数 y=|2x2|的图象是( )A B C D二

4、、填空题131785 与 840 的最大约数为 精选高中模拟试卷第 3 页,共 16 页14已知角 终边上一点为 P( 1,2),则 值等于 15给出下列命题:把函数 y=sin(x )图象上所有点的横坐标缩短到原来的 倍,纵坐标不变,得到函数y=sin(2x );若 , 是第一象限角且 ,则 coscos ;x= 是函数 y=cos(2x+ )的一条对称轴;函数 y=4sin(2x+ )与函数 y=4cos(2x )相同;y=2sin(2x )在是增函数;则正确命题的序号 16不等式 的解集为 17某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量 (单位:毫克/升)与时间 (单Pt

5、位:小时)间的关系为 ( , 均为正常数)如果前 5 个小时消除了 的污染物,为了0ektP0 10%消除 的污染物,则需要_小时.27.1%【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.18f(x)=x (x c) 2在 x=2 处有极大值,则常数 c 的值为 14已知集合 ,若 3M,5 M,则实数 a 的取值范围是 三、解答题19已知复数 z 的共轭复数是 ,且复数 z 满足:|z1|=1, z0,且 z 在复平面上对应的点在直线 y=x 上求 z 及 z 的值精选高中模拟试卷第 4 页,共 16 页20设椭圆 C: + =1(ab0)过点(0,4),离心率为

6、(1)求椭圆 C 的方程;(2)求过点(3,0)且斜率为 的直线被椭圆所截得线段的中点坐标21已知复数 z=m(m1)+ (m 2+2m3)i (m R )(1)若 z 是实数,求 m 的值;(2)若 z 是纯虚数,求 m 的值;(3)若在复平面 C 内,z 所对应的点在第四象限,求 m 的取值范围22已知 A(3,0),B (3,0),C (x 0,y 0)是圆 M 上的三个不同的点(1)若 x0=4,y 0=1,求圆 M 的方程;(2)若点 C 是以 AB 为直径的圆 M 上的任意一点,直线 x=3 交直线 AC 于点 R,线段 BR 的中点为 D判断直线 CD 与圆 M 的位置关系,并证

7、明你的结论精选高中模拟试卷第 5 页,共 16 页23根据下列条件求方程(1)若抛物线 y2=2px 的焦点与椭圆 + =1 的右焦点重合,求抛物线的准线方程 (2)已知双曲线的离心率等于 2,且与椭圆 + =1 有相同的焦点,求此双曲线标准方程24(本小题满分 12 分)如图,多面体 中,四边形 ABCD 为菱形,且 , , ,ABCDEF60DAB/EFAC2D.3E(1)求证: ;(2)若 ,求三棱锥 的体积.5-精选高中模拟试卷第 6 页,共 16 页精选高中模拟试卷第 7 页,共 16 页头屯河区高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答

8、案】A【解析】 选 A,解析:2227cos()cos()1sin()33382 【答案】A【解析】解:0ab 且 a+b=12b12aba=a (2b 1)0,即 2aba又 a2+b22ab=(a b) 20a 2+b22ab最大的一个数为 a2+b2故选 A3 【答案】B【解析】解:数列a n满足 log3an+1=log3an+1(nN *),an+1=3an0,数列 an是等比数列,公比 q=3又 a2+a4+a6=9, =a5+a7+a9=339=35,则 log (a 5+a7+a9)= =5故选;B4 【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆

9、(x2 ) 2+y2=2 的圆心(2,0),半径为 ,精选高中模拟试卷第 8 页,共 16 页双曲线 =1(a 0,b 0)的渐近线与圆(x 2) 2+y2=2 相切,可得: ,可得 a2=b2,c= a,e= = 故选:B【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力5 【答案】B【解析】解:由 f(x)图象单调性可得 f(x)在( ,1)(0,+ )大于 0,在(1, 0)上小于 0,f( x) f(x)0 的解集为( ,2)(1,0)故选 B6 【答案】A【解析】解:直线 x+y1=0 与 2x+2y+3=0 的距离,就是直线 2x+2y2=0

10、与 2x+2y+3=0 的距离是: =故选:A7 【答案】D【解析】【分析】对于可构造四棱锥 CABD 与四面体 OABC 一样进行判定;对于,使 AB=AD=BD,此时存在点 D,使四面体 ABCD 是正三棱锥;对于 取 CD=AB,AD=BD,此时 CD 垂直面 ABD,即存在点 D,使CD 与 AB 垂直并且相等,对于先找到四面体 OABC 的内接球的球心 P,使半径为 r,只需 PD=r,可判定的真假【解答】解:四面体 OABC 的三条棱 OA,OB,OC 两两垂直,OA=OB=2,OC=3,AC=BC= ,AB=当四棱锥 CABD 与四面体 OABC 一样时,即取 CD=3,AD=B

11、D=2此时点 D,使四面体 ABCD 有三个面是直角三角形,故不正确使 AB=AD=BD,此时存在点 D,使四面体 ABCD 是正三棱锥,故不正确;取 CD=AB,AD=BD,此时 CD 垂直面 ABD,即存在点 D,使 CD 与 AB 垂直并且相等,故 正确;先找到四面体 OABC 的内接球的球心 P,使半径为 r,只需 PD=r 即可存在无数个点 D,使点 O 在四面体 ABCD 的外接球面上,故 正确精选高中模拟试卷第 9 页,共 16 页故选 D8 【答案】B【解析】如图,当直线 经过函数 的图象mxxy2与直线 的交点时,03yx函数 的图像仅有一个点 在可行域内,2P由 ,得 ,

12、)2,1(9 【答案】 C【解析】解: =(sin 2) +(cos 2) ( R),且 sin2+cos2=1, =(1 cos2) +(cos 2) = +cos2( ),即 =cos2( ),可得 =cos2 ,又cos 20,1 ,P 在线段 OC 上,由于 AB 边上的中线 CO=2,因此( + ) =2 ,设| |=t,t 0,2 ,可得( + ) =2t(2t )=2t 24t=2(t 1) 22,当 t=1 时,( + ) 的最小值等于 2故选 C【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题10【答

13、案】C【解析】解:由题意, + + = ,得到 ,又| |=| |=| |,OAB 是等边三角形,所以四边形 OCAB 是边长为 2 的菱形,所以 在 方向上的投影为 ACcos30=2 = ;故选 C425 414154 32精选高中模拟试卷第 10 页,共 16 页【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形 OBAC 的形状,利用向量解答11【答案】D【解析】解:当|a|1 时,函数为增函数,且过定点( 0,1 ),因为 01 1,故排除 A,B当|a|1 时且 a0 时,函数为减函数,且过定点(0,1 ),因为 1 0,故排除 C故选:D12【答案】B【解

14、析】解:y=|2 x2|= ,x=1 时,y=0,x1 时, y0故选 B【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解二、填空题13【答案】 105 【解析】解:1785=8402+105,840=1058+0 精选高中模拟试卷第 11 页,共 16 页840 与 1785 的最大公约数是 105故答案为 10514【答案】 【解析】解:角 终边上一点为 P( 1,2),所以 tan=2= = = 故答案为: 【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力15【答案】 【解析】解:对于,把函数 y=sin(x )图象上所有点的横坐标缩短到原来的 倍,纵坐

15、标不变,得到函数 y=sin(2x ),故正确对于,当 , 是第一象限角且 ,如 =30,=390,则此时有 cos=cos= ,故错误对于,当 x= 时,2x+ = ,函数 y=cos(2x+ )= 1,为函数的最小值,故 x= 是函数 y=cos(2x+ )的一条对称轴,故正确对于,函数 y=4sin(2x+ )=4cos (2x+ )=4cos( 2)=4cos(2x ),故函数 y=4sin(2x+ )与函数 y=4cos(2x )相同,故正确对于,在上,2x ,函数 y=2sin(2x )在上没有单调性,故错误,故答案为:16【答案】 (0,1 【解析】解:不等式 ,即 ,求得 0x

16、1,故答案为:(0,1精选高中模拟试卷第 12 页,共 16 页【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题17【答案】15【解析】由条件知 ,所以 .消除了 的污染物后,废气中的污染物数量为50.9ekP509k27.1%,于是 , ,所以 小时.0.72972t 357et kt18【答案】 6 【解析】解:f(x)=x 32cx2+c2x,f(x)=3x 24cx+c2,f(2)=0c=2 或 c=6若 c=2,f(x)=3x 28x+4,令 f(x)0x 或 x2,f(x)0 x2,故函数在( , )及(2,+)上单调递增,在( , 2)上单调递减,x=2 是极小值

17、点故 c=2 不合题意,c=6故答案为 6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式三、解答题19【答案】 【解析】解:z 在复平面上对应的点在直线 y=x 上且 z0,设 z=a+ai,( a0),|z 1|=1,|a 1+ai|=1,即 =1,则 2a22a+1=1,即 a2a=0,解得 a=0(舍)或 a=1,即 z=1+i, =1i,则 z =( 1+i)(1i)=2【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键20【答案】 【解析】解:(1)将点(0,4)代入椭圆 C 的方程得 =1,b=4,精选高中模拟试卷第 13

18、 页,共 16 页由 e= = ,得 1 = ,a=5,椭圆 C 的方程为 + =1(2)过点(3,0)且斜率为 的直线为 y= (x3),设直线与椭圆 C 的交点为 A(x 1,y 1),B(x 2,y 2),将直线方程 y= (x 3)代入椭圆 C 方程,整理得 x23x8=0,由韦达定理得 x1+x2=3,y1+y2= (x 13)+ (x 23)= (x 1+x2) = 由中点坐标公式 AB 中点横坐标为 ,纵坐标为 ,所截线段的中点坐标为( , )【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键21【答案】 【解析】解:(1)z

19、 为实数m 2+2m3=0,解得:m= 3 或 m=1;(2)z 为纯虚数 ,解得:m=0 ;(3)z 所对应的点在第四象限 ,解得:3m022【答案】 【解析】解:(1)设圆的方程为 x2+y2+Dx+Ey+F=0圆的方程为 x2+y28y9=0(2)直线 CD 与圆 M 相切 O、D 分别是 AB、BR 的中点则 ODAR,CAB=DOB,ACO= COD,又CAO=ACO,DOB=COD又 OC=OB,所以BODCOD精选高中模拟试卷第 14 页,共 16 页OCD=OBD=90即 OCCD ,则直线 CD 与圆 M 相切 (其他方法亦可)23【答案】 【解析】解:(1)易知椭圆 + =

20、1 的右焦点为(2, 0),由抛物线 y2=2px 的焦点( , 0)与椭圆 + =1 的右焦点重合,可得 p=4,可得抛物线 y2=8x 的准线方程为 x=2(2)椭圆 + =1 的焦点为( 4,0)和(4,0),可设双曲线的方程为 =1(a,b0),由题意可得 c=4,即 a2+b2=16,又 e= =2,解得 a=2,b=2 ,则双曲线的标准方程为 =1精选高中模拟试卷第 15 页,共 16 页【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题24【答案】【解析】【命题意图】本小题主要考查空间直线与直线、直线与平面的位置关系及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等(2)在 中, , ,EAD 32AD精选高中模拟试卷第 16 页,共 16 页

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报