1、精选高中模拟试卷第 1 页,共 16 页古冶区高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知 f(x)=m2 x+x2+nx,若x|f(x)=0=x|f(f (x)=0,则 m+n 的取值范围为( )A(0,4) B0,4) C(0,5 D0 ,52 已知函数 ,其中 , 对任意的 都成立,在 122()3fa(0,3a()0f1,x和两数间插入 2015 个数,使之与 1,构成等比数列,设插入的这 2015 个数的成绩为 ,则 ( )TA B C D2015 205205320153 设命题 p: ,则 p 为( )A BC D4 已知抛物
2、线 28yx与双曲线 的一个交点为 M,F 为抛物线的焦点,若 ,则该双曲21ya 5MF线的渐近线方程为 A、 B、 C、 D、530x50450x40xy5 已知函数 f(x)=a x+b(a 0 且 a1)的定义域和值域都是 1,0 ,则 a+b=( )A B C D 或6 过抛物线 y2=4x 的焦点作直线交抛物线于 A(x 1,y 1),B(x 2,y 2),若 x1+x2=6,则|AB|为( )A8 B10 C6 D47 已知命题 p:“1,e ,alnx ”,命题 q:“ xR,x 24x+a=0”若“pq” 是真命题,则实数 a 的取值范围是( )A(1,4 B(0,1 C1,
3、1 D(4,+ )8 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔 10 分钟抽取一个样本进行检测,这种抽样方法是( )A抽签法 B随机数表法 C系统抽样法 D分层抽样法9 已知函数 f(x)= 若关于 x 的方程 f(x)=k 有两个不同的实根,则实数 k 的取值范围是( )A(0,1) B(1,+ ) C( 1,0) D(,1)精选高中模拟试卷第 2 页,共 16 页10过点(1, 3)且平行于直线 x2y+3=0 的直线方程为( )Ax2y+7=0 B2x+y 1=0 Cx 2y5=0 D2x+y 5=011若多项式 x2+x10=a0+a1(x+1)+a 8(x+1 ) 8+
4、a9(x+1 ) 9+a10(x+1) 10,则 a8=( )A45 B9 C 45 D912设 f(x)=asin(x+) +bcos(x+)+4,其中 a,b, 均为非零的常数,f(1988)=3,则f(2008)的值为( )A1 B3 C5 D不确定二、填空题13已知数列 的首项 ,其前 项和为 ,且满足 ,若对 ,na1mnnS213nSnN1na恒成立,则 的取值范围是_【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力14经过 A(3,1),且平行于 y 轴的直线方程为 15已知函数 31,ln4fxmgx. mi,ab表示 ,中的
5、最小值,若函数in,0hxg恰有三个零点,则实数 的取值范围是 16(若集合 A2,3,7,且 A 中至多有 1 个奇数,则这样的集合共有 个17已知 f(x)= ,x0,若 f1(x)=f(x),f n+1(x)=f(f n(x),nN +,则 f2015(x)的表达式为 18在(2x+ ) 6的二项式中,常数项等于 (结果用数值表示)三、解答题19(本小题满分 12 分)已知数列 的各项均为正数, , .na12a114nna()求数列 的通项公式;()求数列 的前 项和 1nanS精选高中模拟试卷第 3 页,共 16 页20(本小题满分 13 分)如图,已知椭圆 的上、下顶点分别为 ,点
6、 在椭圆上,且异于点 ,直线2:14xCy,ABP,AB,P与直线 分别交于点 ,:ly,MN(1)设直线 的斜率分别为 ,求证: 为定值;,APB12k12k(2)求线段 的长的最小值;(3)当点 运动时,以 为直径的圆是否经过某定点?请证明你的结论【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.21(本小题满分 10 分)选修 45:不等式选讲已知函数 , ()fxa()R()若当 时, 恒成立,求实数 的取值;02fxa()当 时,求证: 3()()afxfxf精选高中模拟试卷第 4 页,共 16 页22已知函
7、数 , 3()1xf2,5(1)判断 的单调性并且证明;(2)求 在区间 上的最大值和最小值()fx,23已知函数 y=34cos(2x+ ),x , ,求该函数的最大值,最小值及相应的 x 值24【南京市 2018 届高三数学上学期期初学情调研】已知函数 f(x)2x 33(a+1)x 26ax,aR()曲线 yf(x)在 x0 处的切线的斜率为 3,求 a 的值;()若对于任意 x(0,+ ),f(x)f (x)12lnx 恒成立,求 a 的取值范围;()若 a1,设函数 f(x)在区间1 ,2上的最大值、最小值分别为 M(a)、m(a),记 h(a)M(a)m(a),求 h(a)的最小值
8、精选高中模拟试卷第 5 页,共 16 页精选高中模拟试卷第 6 页,共 16 页古冶区高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:设 x1x|f(x)=0=x|f (f(x)=0,f(x 1)=f(f(x 1)=0,f(0)=0 ,即 f(0)=m=0,故 m=0;故 f(x)=x 2+nx,f(f(x)=(x 2+nx)(x 2+nx+n)=0,当 n=0 时,成立;当 n0 时,0, n 不是 x2+nx+n=0 的根,故=n 24n0,故 0n4;综上所述,0n+m4;故选 B【点评】本题考查了函数与集合的关系应用及分类讨论的
9、思想应用,同时考查了方程的根的判断,属于中档题2 【答案】C【解析】试题分析:因为函数 , 对任意的 都成立,所以 ,解得22()3fxax()0f1,x10f或 ,又因为 ,所以 ,在和两数间插入 共 个数,使之与,构成3a10,3205.a等比数列, , ,两式相乘,根据等比数列的性质得T215.aA215.TA, ,故选 C. 0150230考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.3 【答案】A【解析】【知识点】全称量词与存在性量词【试题解析】因为特称命题的否定是全称命题, p 为: 。故答案为:A4 【答案】精选高中模拟试卷第 7 页,共 16 页【解析】:依题
10、意,不妨设点 M 在第一象限,且 Mx0,y 0,由抛物线定义,|MF |x 0 ,得 5x 02.p2x03,则 y 24,所以 M3,2 ,又点 M 在双曲线上,20 6 241,则 a2 ,a ,32a2 925 35因此渐近线方程为 5x3y0.5 【答案】B【解析】解:当 a1 时,f (x)单调递增,有 f( 1)= +b=1,f(0)=1+b=0,无解;当 0a1 时,f (x)单调递减,有 f( 1)= =0,f(0)=1+b=1,解得 a= ,b= 2;所以 a+b= = ;故选:B6 【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是 x=1,抛物线 y2=4x 的
11、焦点作直线交抛物线于 A(x 1,y 1)B(x 2,y 2)两点|AB|=2(x 1+x2),又 x1+x2=6|AB|=2(x 1+x2)=8故选 A7 【答案】A【解析】解:若命题 p:“1 ,e,alnx ,为真命题,则 alne=1,若命题 q:“xR,x 24x+a=0”为真命题,则=16 4a0,解得 a4,若命题“pq” 为真命题,则 p,q 都是真命题,精选高中模拟试卷第 8 页,共 16 页则 ,解得:1a4故实数 a 的取值范围为(1,4故选:A【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题 p,q 的等价条件是解决本题的关键8 【答案】C【解析】解
12、:由题意知,这个抽样是在传送带上每隔 10 分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,是系统抽样法,故选:C【点评】本题考查了系统抽样抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样属于基础题9 【答案】A【解析】解:函数 f(x)= 的图象如下图所示:由图可得:当 k(0,1)时,y=f(x)与 y=k 的图象有两个交点,即方程 f(x)=k 有两个不同的实根,故选:A精选高中模拟试卷第 9 页,共 1
13、6 页10【答案】A【解析】解:由题意可设所求的直线方程为 x2y+c=0过点(1,3 )代入可得1 6+c=0 则 c=7x2y+7=0故选 A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=011【答案】A【解析】解:a 8 是 x10=1+( x+1) 10的展开式中第九项(x+1) 8 的系数,a 8= =45,故选:A【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题12【答案】B【解析】解:f(1988)=asin(1988+ )+bcos(1998 +)+4=asin+bcos
14、+4=3,asin+bcos =1,故 f(2008)=asin(2008+ )+bcos(2008+)+4=asin+bcos+4= 1+4=3,故选:B【点评】本题主要考查利用诱导公式进行化简求值,属于中档题二、填空题13【答案】 15(,)43精选高中模拟试卷第 10 页,共 16 页14【答案】 x= 3 【解析】解:经过 A(3,1),且平行于 y 轴的直线方程为:x= 3故答案为:x=315【答案】 5,4【解析】试题分析:23fxm,因为 10g,所以要使 min,0hxfxg恰有三个零点,须满足10,()0,f,解得5153,4324考点:函数零点【思路点睛】涉及函数的零点问题
15、、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.16【答案】 6 【解析】解:集合 A 为2,3,7的真子集有 7 个,奇数 3、7 都包含的有3,7,则符合条件的有 71=6个故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查17【答案】 【解析】解:由题意 f1(x) =f(x)= 精选高中模拟试卷第 11 页,共 16 页f2(x)=f(f 1(x)= ,f3(x)=f(f 2(x)= = ,f
16、n+1(x)=f(f n(x)= ,故 f2015(x)=故答案为: 18【答案】 240 【解析】解:由(2x+ ) 6,得= 由 63r=0,得 r=2常数项等于 故答案为:240三、解答题19【答案】(本小题满分 12 分)解: ()由 得 , 是等差数列,公差为 4,首项为 4, (3 分)114nnaa214n2na ,由 得 (6 分)24()n0() , (9 分)1 ()22n数列 的前 项和为a (12 分)11(2)(3)()()22nn精选高中模拟试卷第 12 页,共 16 页20【答案】【解析】(1)易知 ,设 ,则由题设可知 ,0,1,AB0,Pxy0x直线 AP 的
17、斜率 ,BP 的斜率 ,又点 P 在椭圆上,所以0ykx21k, ,从而有 . (4 分)204xy02001xx 21【答案】精选高中模拟试卷第 13 页,共 16 页【解析】【解析】() 得,()2xaf2ax由题意得 ,故 ,所以 5 分204a() , , ,311 2fxfxaxa212axaa,2a 10 分ffff22【答案】(1)增函数,证明见解析;(2)最小值为,最大值为 .25【解析】试题分析:(1)在 上任取两个数 ,则有 ,所以 在2,512x12123()() 0xfxf()fx上是增函数;(2)由(1)知,最小值为 ,最大值为 .,5 5试题解析:在 上任取两个数
18、,则有,12x,123()fxf123()x0所以 在 上是增函数,5所以当 时, ,min()()fxf当 时, .xa52考点:函数的单调性证明【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数 ,然后作差 ,利用十字相乘法、提公因式法等方法化简式子12x12()fxf成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.123【答案】 【解析】解:函数 y=34cos(2x+ ),由于 x , ,精选高中模拟试卷第 14 页,共 16 页所以:当 x=0 时,函数 y
19、min=1当 x= 时,函数 ymax=7【点评】本题考查的知识要点:利用余弦函数的定义域求函数的值域属于基础题型24【答案】(1)a (2)(,1 (3)1e827【解析】(2)f(x)f(x) 6(a1)x 212lnx 对任意 x(0,+)恒成立,所以(a1) ln令 g(x) ,x 0,则 g(x) 2 312lnx令 g(x )0,解得 x e当 x(0, )时,g (x)0,所以 g(x)在(0, )上单调递增;e e当 x( , )时,g(x)0,所以 g(x)在( , )上单调递减所以 g(x) maxg( ) ,1e所以(a1) ,即 a1 ,所以 a 的取值范围为(,1 e
20、(3)因为 f(x )2x 33(a1)x 26ax,所以 f (x)6x 26(a1)x6a6(x1)(xa),f(1)3a1,f(2)4令 f (x)0,则 x1 或 a 精选高中模拟试卷第 15 页,共 16 页f(1)3a1,f(2)4当 a2 时,53当 x(1,a)时,f (x )0,所以 f(x)在(1,a)上单调递减;当 x(a,2)时,f (x )0,所以 f(x)在(a,2)上单调递增又因为 f(1)f(2),所以 M(a)f(1)3a1,m(a)f(a)a 33a 2,所以 h(a)M(a)m(a)3a1(a 33a 2) a33a 23a1因为 h (a)3a 26a3
21、3(a1) 20所以 h(a)在( ,2)上单调递增,5所以当 a( ,2)时,h(a)h( ) 353827当 a2 时,当 x(1,2)时,f (x )0,所以 f(x)在(1,2)上单调递减,所以 M(a)f(1)3a1,m (a)f(2)4,所以 h(a)M(a)m(a)3a143a5,所以 h(a)在2,)上的最小值为 h(2)1综上,h(a)的最小值为 827精选高中模拟试卷第 16 页,共 16 页点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.