1、精选高中模拟试卷第 1 页,共 15 页历下区高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 若函数 yfx的定义域是 1,206,则函数 1gxf的定义域是( )A 0,26 B 5 C ,206 D 1,2072 命题“若 = ,则 tan =1”的逆否命题是( )A若 ,则 tan 1 B若 = ,则 tan 1C若 tan 1,则 D若 tan 1,则 =3 已知 是ABC 的一个内角,tan= ,则 cos( + )等于( )A B C D4 若双曲线 =1(a 0,b0)的渐近线与圆(x2) 2+y2=2 相切,则此双曲线的离心率等于(
2、 )A B C D25 设 aR,且(a i) 2i(i 为虚数单位)为正实数,则 a 等于( )A1 B0 C 1 D0 或16 函数 是周期为 4 的奇函数,且在 上的解析式为 ,则()fx 02,(1),01)sin2xxf-=p( )74f+=A B C D1691616136【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力7 已知函数 f(x)是 R 上的奇函数,且当 x0 时,f(x)=x 32x2,则 x0 时,函数 f(x)的表达式为f(x)=( )Ax 3+2x2 Bx 32x2 C x3+2x2 Dx 32x2精选高中模拟试
3、卷第 2 页,共 15 页8 已知实数 满足不等式组 ,若目标函数 取得最大值时有唯一的最优解 ,yx,5342yxmxyz)3,1(则实数 的取值范围是( )mA B C D110m11【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.9 函数 y=f(x)是函数 y=f(x)的导函数,且函数 y=f(x)在点 p(x 0,f (x 0)处的切线为l:y=g(x)=f (x 0)(x x0)+f(x 0),F (x)=f(x) g(x),如果函数 y=f(x)在区间a ,b上的图象如图所示,且
4、 ax 0b,那么( )AF( x0)=0,x=x 0是 F( x)的极大值点BF(x 0)=0,x=x 0是 F(x)的极小值点CF(x 0)0,x=x 0不是 F(x)极值点DF( x0)0,x=x 0是 F(x)极值点10 在等差数列 中,已知 ,则 ( )A12 B24 C36 D4811已知集合 A=1,0,1,2 ,集合 B=0,2,4,则 AB 等于( )A 1,0,1,2,4 B1,0,2,4C0,2,4 D0 ,1,2,412现准备将 7 台型号相同的健身设备全部分配给 5 个不同的社区,其中甲、乙两个社区每个社区至少 2 台,其它社区允许 1 台也没有,则不同的分配方案共有
5、( )A27 种 B35 种 C29 种 D125 种二、填空题13将曲线 向右平移 个单位后得到曲线 ,若 与 关于 轴对称,则1:C2sin(),04yx62C12x精选高中模拟试卷第 3 页,共 15 页的最小值为_.14长方体 ABCDA1B1C1D1的棱 AB=AD=4cm,AA 1=2cm,则点 A1到平面 AB1D1的距离等于 cm15在半径为 2 的球面上有 A、B、C、D 四点,若 AB=CD=2,则四面体 ABCD 的体积的最大值为 16计算 sin43cos13cos43sin13的值为 17已知实数 x,y 满足约束条 ,则 z= 的最小值为 18定义:x(x R)表示
6、不超过 x 的最大整数例如1.5=1,0.5=1给出下列结论:函数 y=sinx是奇函数;函数 y=sinx是周期为 2的周期函数;函数 y=sinxcosx 不存在零点;函数 y=sinx+cosx的值域是 2, 1,0,1 其中正确的是 (填上所有正确命题的编号)三、解答题19在极坐标系下,已知圆 O:=cos +sin 和直线l: (1)求圆 O 和直线 l 的直角坐标方程;(2)当 (0,)时,求直线 l 与圆 O 公共点的极坐标精选高中模拟试卷第 4 页,共 15 页20已知直线 l1: ( t 为参数),以坐标原点为极点, x 轴的正半轴为极轴建立直角坐标系,圆C1: 22 cos
7、4sin+6=0(1)求圆 C1的直角坐标方程,直线 l1的极坐标方程;(2)设 l1与 C1的交点为 M,N ,求C 1MN 的面积21已知集合 A=x| 1,xR,B=x|x 22xm0 ()当 m=3 时,求;A ( RB);()若 AB=x|1x4,求实数 m 的值22设函数 f(x)=lnx+ ,k R()若曲线 y=f(x)在点(e,f(e)处的切线与直线 x2=0 垂直,求 k 值;()若对任意 x1x 20,f(x 1)f(x 2)x 1x2恒成立,求 k 的取值范围;()已知函数 f(x)在 x=e 处取得极小值,不等式 f(x) 的解集为 P,若 M=x|ex3,且 MP,
8、求实数 m 的取值范围精选高中模拟试卷第 5 页,共 15 页23已知函数 f(x)=()求函数 f(x)单调递增区间;()在ABC 中,角 A,B,C 的对边分别是 a,b,c,且满足(2a c)cosB=bcosC,求 f(A)的取值范围24已知抛物线 C:x 2=2y 的焦点为 F()设抛物线上任一点 P(m ,n)求证:以 P 为切点与抛物线相切的方程是 mx=y+n;()若过动点 M(x 0,0)(x 00)的直线 l 与抛物线 C 相切,试判断直线 MF 与直线 l 的位置关系,并予以证明精选高中模拟试卷第 6 页,共 15 页历下区高中 2018-2019 学年高二上学期第一次月
9、考试卷数学(参考答案)一、选择题1 【答案】B 【解析】2 【答案】C【解析】解:命题“若 = ,则 tan =1”的逆否命题是“若 tan 1,则 ”故选:C3 【答案】B【解析】解:由于 是ABC 的一个内角,tan = ,则 = ,又 sin2+cos2=1,解得 sin= , cos= (负值舍去)则 cos(+ )=cos cossin sin= ( )= 故选 B【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题4 【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x2 ) 2+y2=2 的圆心(
10、2,0),半径为 ,双曲线 =1(a 0,b 0)的渐近线与圆(x 2) 2+y2=2 相切,精选高中模拟试卷第 7 页,共 15 页可得: ,可得 a2=b2,c= a,e= = 故选:B【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力5 【答案】B【解析】解:(ai) 2i=2ai+2 为正实数,2a=0,解得 a=0故选:B【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题6 【答案】C7 【答案】A【解析】解:设 x0 时,则x0,因为当 x0 时,f(x)=x 32x2所以 f( x)= ( x) 32(x ) 2=x32x2,
11、又因为 f(x)是定义在 R 上的奇函数,所以 f(x)=f(x),所以当 x0 时,函数 f(x)的表达式为 f(x)=x 3+2x2, 故选 A8 【答案】C【解析】画出可行域如图所示, ,要使目标函数 取得最大值时有唯一的最优解 ,则需),1(Amxyz)3,1(直线 过点 时截距最大,即 最大,此时 即可.lAzlk精选高中模拟试卷第 8 页,共 15 页9 【答案】 B【解析】解:F(x)=f (x)g(x)=f(x)f(x 0)(xx 0) f(x 0),F (x )=f(x)f(x 0)F (x 0)=0,又由 ax 0b,得出当 axx 0时,f (x)f(x 0),F(x)0
12、,当 x0xb 时,f(x)f(x 0),F(x)0,x=x 0是 F(x)的极小值点故选 B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于 0,反之当导函数等于 0 时还要判断原函数的单调性才能确定是否有极值10【答案】 B【解析】,所以 ,故选 B答案:B11【答案】A【解析】解:A= 1,0,1,2 ,B=0,2,4,AB=1,0,1,20, 2,4= 1,0,1,2,4 故选:A【点评】本题考查并集及其运算,是基础的会考题型精选高中模拟试卷第 9 页,共 15 页12【答案】 B【解析】排列、组合及简单计数问题【专题】计算题【分析】根据题意,可将 7
13、台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,当三台设备都给一个社区,当三台设备分为 1 和 2 两份分给 2 个社区,当三台设备按 1、1、1 分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案【解答】解:根据题意,7 台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少 2 台,可以先分给甲、乙两个社区各 2 台设备,余下的三台设备任意分给五个社区,分三种情况讨论:当三台设备都给一个社区时,有 5 种结果,当三台设备分为 1 和 2 两份分给 2 个社区时,有 2C52=20 种结
14、果,当三台设备按 1、1、1 分成三份时分给三个社区时,有 C53=10 种结果,不同的分配方案有 5+20+10=35 种结果;故选 B【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素二、填空题13【答案】 6【解析】解析:曲线 的解析式为 ,由 与 关于 轴对2C2sin()2sin()6446yxx1C2x称知 ,即 对一sin()si()464xx1cos)si(cos()04 切 恒成立, , ,由 得 的最小值R1co0sin()6(2)6k6(21),kZ为 6.14【答案】 精选高中模拟试卷第 10 页,共 15 页【解析】解:由题意
15、可得三棱锥 B1AA1D1的体积是 = ,三角形 AB1D1的面积为 4 ,设点 A1到平面 AB1D1的距离等于 h,则 ,则 h=故点 A1到平面 AB1D1的距离为 故答案为: 15【答案】 【解析】解:过 CD 作平面 PCD,使 AB平面 PCD,交 AB 与 P,设点 P 到 CD 的距离为 h,则有 V= 2h 2,当球的直径通过 AB 与 CD 的中点时,h 最大为 2 ,则四面体 ABCD 的体积的最大值为 故答案为: 【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力属于基础题16【答案】 【解析】解:sin43cos13
16、 cos43sin13=sin(4313)=sin30 = ,精选高中模拟试卷第 11 页,共 15 页故答案为 17【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由 z= =32x+y,设 t=2x+y,则 y=2x+t,平移直线 y=2x+t,由图象可知当直线 y=2x+t 经过点 B 时,直线 y=2x+t 的截距最小,此时 t 最小由 ,解得 ,即 B( 3,3),代入 t=2x+y 得 t=2(3)+3=3t 最小为3,z 有最小值为 z= =33= 故答案为: 【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本
17、方法精选高中模拟试卷第 12 页,共 15 页18【答案】 【解析】解:函数 y=sinx是非奇非偶函数;函数 y=sinx的周期与 y=sinx 的周期相同,故是周期为 2的周期函数;函数 y=sinx的取值是1,0,1,故 y=sinxcosx 不存在零点;函数数 y=sinx、y=cosx的取值是1,0,1,故 y=sinx+cosx的值域是2, 1,0,1 故答案为:【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键三、解答题19【答案】 【解析】解:(1)圆 O: =cos+sin ,即 2=cos+sin,故圆 O 的直角坐标方程为: x2+y2=x+y,即 x2+y
18、2xy=0 直线 l: ,即 sincos=1,则直线的直角坐标方程为:yx=1,即 xy+1=0(2)由 ,可得 ,直线 l 与圆 O 公共点的直角坐标为(0,1),故直线 l 与圆 O 公共点的一个极坐标为 【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题20【答案】 【解析】解:(1) ,将其代入 C1得: ,圆 C1的直角坐标方程为: 由直线 l1: (t 为参数),消去参数可得:y= x,可得 ( R )直线 l1的极坐标方程为: ( R )(2) ,可得 ,精选高中模拟试卷第 13 页,共 15 页 【点评】本题考查了极坐标方程化为直角坐标方程
19、、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题21【答案】 【解析】解:(1)当 m=3 时,由 x22x301x3,由 11 x5,AB=x|1 x3;(2)若 AB=x|1x4 ,A=(1,5),4 是方程 x22xm=0 的一个根,m=8,此时 B=(2,4),满足 AB=(1,4)m=822【答案】 【解析】解:()由条件得 f(x)= (x0),曲线 y=f(x)在点(e,f (e)处的切线与直线 x2=0 垂直,此切线的斜率为 0,即 f(e)=0,有 =0,得 k=e;()条件等价于对任意 x1x 20,f(x 1)x 1f(x 2)x 2恒成立
20、(*)设 h(x)=f(x)x=lnx+ x(x0),(*)等价于 h(x)在(0,+)上单调递减由 h(x)= 100 在(0,+)上恒成立,得 kx2+x=(x ) 2+ (x0)恒成立,k (对 k= ,h(x)=0 仅在 x= 时成立),故 k 的取值范围是 ,+);精选高中模拟试卷第 14 页,共 15 页()由题可得 k=e,因为 MP,所以 f(x) 在e,3 上有解,即xe,3,使 f(x) 成立,即xe,3,使 mxlnx+e 成立,所以 m(xlnx+e ) min,令 g(x)=xlnx+e ,g(x)=1+lnx0,所以 g(x)在e,3上单调递增,g(x) min=g
21、(e)=2e,所以 m2e【点评】本题考查导数的运用:求切线的斜率和单调区间,主要考查函数的单调性的运用,考查不等式存在性和恒成立问题的解决方法,考查运算能力,属于中档题23【答案】 【解析】解:()f(x) = sin cos +cos2 =sin( + ) ,由 2k + 2k ,k Z 可解得:4k x4k ,kZ,函数 f(x)单调递增区间是: 4k ,4k ,k Z()f(A)=sin ( + ) ,由条件及正弦定理得 sinBcosC=(2sinA sinC)cosB=2sinAcosBsinCcosB,则 sinBcosC+sinCcosB=2sinAcosB,sin(B+C)=
22、2sinAcosB ,又 sin(B+C)=sinA 0,cosB= ,又 0B ,B= 可得 0A , + , sin( + )1,故函数 f(A)的取值范围是(1, )精选高中模拟试卷第 15 页,共 15 页【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题24【答案】 【解析】证明:()由抛物线 C:x 2=2y 得,y= x2,则 y=x,在点 P(m,n)切线的斜率 k=m,切线方程是 yn=m(xm),即 yn=mxm2,又点 P(m,n)是抛物线上一点,m 2=2n,切线方程是 mx2n=yn,即 mx=y+n ()直线 MF 与直线 l 位置关系是垂直由()得,设切点为 P(m ,n),则切线 l 方程为 mx=y+n,切线 l 的斜率 k=m,点 M( ,0),又点 F(0, ),此时,k MF= = = = kk MF=m( )= 1,直线 MF直线 l 【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题