1、精选高中模拟试卷第 1 页,共 17 页容城县高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 下列命题正确的是( )A很小的实数可以构成集合.B集合 2|1yx与集合 2,|1xy是同一个集合.C自然数集 N中最小的数是.D空集是任何集合的子集.2 已知圆 的半径为 1, 为该圆的两条切线, 为两切点,那么OPABABPAB的最小值为 A、 B、 C、 D、423242323 下列函数在其定义域内既是奇函数又是增函数的是( )A B C D4 已知两条直线 ,其中为实数,当这两条直线的夹角在 内变动12:,:0Lyxay 0,12时,的取值范围是(
2、 )A B C D0, 3, 3,1,1,35 已知抛物线 的焦点为 , ,点 是抛物线上的动点,则当 的值最小时,24yxF(1,0)AP|PFA的PF面积为( )A. B. C. D. 2224【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.6 已知函数 ,关于 的方程 ( )有 3 个相异的实数根,则 的()xef=2()()10fxaf-+-=aR a取值范围是( )A B C D21(,)e-+2(,)e-2(0,)e-21e-精选高中模拟试卷第 2 页,共 17 页【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问
3、题解决问题的能力7 sin570的值是( )A B C D8 点 A 是椭圆 上一点,F 1、F 2分别是椭圆的左、右焦点,I 是AF 1F2的内心若,则该椭圆的离心率为( )A B C D9 函数 y=2|x|的图象是( )A B C D10设 k=1,2,3,4,5,则(x+2) 5的展开式中 xk的系数不可能是( )A10 B40 C50 D8011不等式 0 的解集是( )A(,1)(1,2) B1,2 C(,1)2,+) D(1,212已知回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),则回归直线的方程是( )A =1.23x+4 B =1.23x0.08 C =1.2
4、3x+0.8 D =1.23x+0.08二、填空题13曲线 C 是平面内到直线 l1:x=1 和直线 l2:y=1 的距离之积等于常数 k2(k0)的点的轨迹给出下列四个结论:曲线 C 过点( 1,1);曲线 C 关于点( 1,1)对称;若点 P 在曲线 C 上,点 A,B 分别在直线 l1,l 2上,则|PA|+|PB|不小于 2k;设 p1为曲线 C 上任意一点,则点 P1关于直线 x=1、点(1,1)及直线 y=1 对称的点分别为 P1、P 2、P 3,则四边形 P0P1P2P3的面积为定值 4k2精选高中模拟试卷第 3 页,共 17 页其中,所有正确结论的序号是 14已知| |=1,|
5、 |=2, 与 的夹角为 ,那么| + | |= 15已知函数 f(x)=x 2+ xb+ (a ,b 为正实数)只有一个零点,则 + 的最小值为 16已知等差数列a n中,a 3= ,则 cos(a 1+a2+a6)= 17在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去 8 个三棱锥后,剩下的凸多面体的体积是 18在ABC 中,若 a=9,b=10,c=12,则ABC 的形状是 三、解答题19已知命题 p:x 23x+20;命题 q:0xa若 p 是 q 的必要而不充分条件,求实数 a 的取值范围20(本题满分 12 分)已知数列 的前 项和为 ,且 ,( ).
6、nanS32naN(1)求数列 的通项公式;na(2)记 , 是数列 的前 项和,求 .b14nTnbnT【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前 项和.重点突出对运算及化归能n力的考查,属于中档难度.精选高中模拟试卷第 4 页,共 17 页21已知函数 f(x)=lnx axb(a,b R)()若函数 f(x)在 x=1 处取得极值 1,求 a,b 的值()讨论函数 f(x)在区间( 1,+ )上的单调性()对于函数 f(x)图象上任意两点 A(x 1,y 1),B(x 2,y 2)(x 1x 2),不等式 f(x 0)k 恒成立,其中 k 为直线 AB 的斜率,x
7、 0=x1+(1)x 2,01,求 的取值范围22从某中学高三某个班级第一组的 7 名女生,8 名男生中,随机一次挑选出 4 名去参加体育达标测试()若选出的 4 名同学是同一性别,求全为女生的概率;()若设选出男生的人数为 X,求 X 的分布列和 EX23如图,四面体 ABCD 中,平面 ABC平面 BCD,AC=AB,CB=CD ,DCB=120 ,点 E 在 BD 上,且CE=DE()求证:ABCE;()若 AC=CE,求二面角 ACDB 的余弦值精选高中模拟试卷第 5 页,共 17 页24已知函数 f(x)=lg(2016+x),g(x)=lg(2016x)(1)判断函数 f(x)g(
8、x)的奇偶性,并予以证明(2)求使 f(x)g(x)0 成立 x 的集合精选高中模拟试卷第 6 页,共 17 页容城县高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项 D 是正确,故选 D.考点:集合的概念;子集的概念.2 【答案】D.【解析】设 ,向量 与 的夹角为 , , ,POtAPB21PABtsint, ,22cos1int22cos()()tt,依不等式 的最小值为 .3(1)ABt PAB33 【答案】B【解析】【知识点】函数的单调性与最值函数的
9、奇偶性【试题解析】若函数是奇函数,则 故排除 A、D;对 C: 在(- 和( 上单调递增,但在定义域上不单调,故 C错;故答案为:B4 【答案】C【解析】1111试题分析:由直线方程 ,可得直线的倾斜角为 ,又因为这两条直线的夹角在 ,所1:Lyx0450,12以直线 的倾斜角的取值范围是 且 ,所以直线的斜率为2:0Lax036且 ,即 或 ,故选 C.0tn3t60tan451a3考点:直线的倾斜角与斜率.5 【答案】B 精选高中模拟试卷第 7 页,共 17 页【解析】设 ,则 .又设 ,则 , ,所以2(,)4yP221|4()yFA214yt24yt1,当且仅当 ,即 时,等号成立,此
10、时点 ,22| 1()FtAtt(,2)P的面积为 ,故选B.P|Fy6 【答案】DxyOe1第卷(共 90 分)精选高中模拟试卷第 8 页,共 17 页7 【答案】B【解析】解:原式=sin(720150)=sin150 = 故选 B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键8 【答案】B【解析】解:设AF 1F2的内切圆半径为 r,则SIAF1 = |AF1|r,S IAF2 = |AF2|r,S IF1F2 = |F1F2|r, , |AF1|r=2 |F1F2|r |AF2|r,整理,得|AF 1|+|AF2|=2 |F1F2|a=2 ,椭圆的离心率 e=
11、= = 故选:B9 【答案】B【解析】解:f(x)=2 |x|=2|x|=f(x)y=2 |x|是偶函数,又函数 y=2|x|在0,+)上单调递增,故 C 错误且当 x=0 时,y=1;x=1 时, y=2,故 A,D 错误故选 B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键10【答案】 C【解析】二项式定理【专题】计算题【分析】利用二项展开式的通项公式求出展开式的 xk的系数,将 k 的值代入求出各种情况的系数【解答】解:(x+2) 5的展开式中 xk的系数为 C5k25k精选高中模拟试卷第 9 页,共 17 页当
12、k1 时, C5k25k=C5124=80,当 k=2 时,C 5k25k=C5223=80,当 k=3 时,C 5k25k=C5322=40,当 k=4 时,C 5k25k=C542=10,当 k=5 时,C 5k25k=C55=1,故展开式中 xk的系数不可能是 50故选项为 C【点评】本题考查利用二项展开式的通项公式求特定项的系数11【答案】D【解析】解:依题意,不等式化为 ,解得1 x2,故选 D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解12【答案】D【解析】解:设回归直线方程为 =1.23x+a样本点的中心为(4,5),5=1.234+aa=0.08回归直
13、线方程为 =1.23x+0.08故选 D【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题二、填空题13【答案】 【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1|y1|=k 2,对于,将(1,1)代入验证,此方程不过此点,所以错;对于,把方程中的 x 被2x 代换,y 被 2y 代换,方程不变,故此曲线关于(1,1)对称正确;精选高中模拟试卷第 10 页,共 17 页对于,由题意知点 P 在曲线 C 上,点 A,B 分别在直线 l1,l 2上,则|PA| |x+1|,|PB|y 1|PA|+|PB|2 =2k, 正确;对于,由题意知点 P 在
14、曲线 C 上,根据对称性,则四边形 P0P1P2P3的面积=2|x+1|2|y 1|=4|x+1|y1|=4k2所以 正确故答案为:【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题14【答案】 【解析】解:| |=1,| |=2, 与 的夹角为 , = =1 =1| + | |= = = = 故答案为: 【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题15【答案】 9+4 【解析】解:函数 f(x)=x 2+ xb+ 只有一个零点,=a 4(b+ )=0,a+4b=1,a,b 为正实数, + =( + )(a+4b
15、)=9+ +9+2 =9+4当且仅当 = ,即 a= b 时取等号, + 的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出 a+4b=1 是解决问题的关键,属基础题精选高中模拟试卷第 11 页,共 17 页16【答案】 【解析】解:数列a n为等差数列,且 a3= ,a1+a2+a6=3a1+6d=3(a 1+2d) =3a3=3 = ,cos(a 1+a2+a6)=cos = 故答案是: 17【答案】 【解析】解:在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去 8 个三棱锥,8 个三棱锥的体积为: = 剩下的凸多面体的体积是 1 = 故答案为:
16、 【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力18【答案】锐角三角形【解析】解:c=12 是最大边,角 C 是最大角根据余弦定理,得 cosC= = 0C(0,),角 C 是锐角,由此可得 A、B 也是锐角,所以ABC 是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题三、解答题19【答案】 【解析】解:对于命题 p:x 23x+20,解得:x2 或 x1,精选高中模拟试卷第 12 页,共 17 页命题 p:x2 或 x1,又命题 q:0xa,且 p 是 q 的必要而不充分条件,当
17、a0 时,q:x,符合题意;当 a0 时,要使 p 是 q 的必要而不充分条件,需x|0xa x|x2 或 x1,0a1综上,取并集可得 a(,1【点评】本题考查必要条件、充分条件与充要条件的判断方法,考查了一元二次不等式的解法,是基础题20【答案】【解析】(1)当 时, ;1 分1n323211aaS当 时, ,2n,3naS当 时, ,整理得 .3 分n)(1 1n数列 是以 3 为首项,公比为 3 的等比数列.n数列 的通项公式为 .5 分n精选高中模拟试卷第 13 页,共 17 页21【答案】 【解析】解:()f(x)的导数为 f(x)= a,由题意可得 f( 1)=0,且 f(1)=
18、1,即为 1a=0,且 ab=1,解得 a=1b= 2,经检验符合题意故 a=1,b= 2;()由()可得 f(x)= a,x1,0 1,若 a0,f ( x)0,f (x )在(1,+)递增;0a1,x (1, ),f(x)0,x ( ,+), f(x)0;a1,f (x) 0f (x)在( 1,+)递减综上可得,a0,f(x)在(1,+)递增;精选高中模拟试卷第 14 页,共 17 页0a1,f(x)在(1, )递增,在( ,+)递减;a1,f(x)在(1,+)递减()f (x 0) = a= a,直线 AB 的斜率为 k= = = a,f(x 0)k ,即 x2x1ln x1+(1 )x
19、 2,即为 1ln +(1 ) ,令 t= 1,t 1lnt+(1)t,即 t1tlnt+(tlnt lnt)0 恒成立,令函数 g(t)=t 1tlnt+(tlntlnt),t1,当 0 时,g(t)=lnt+(lnt+1 )= ,令 (t)= tlnt+(tlnt+t 1),t1,(t) =1lnt+(2+lnt )= ( 1)lnt+2 1,当 0 时, (t)0,(t )在(1,+)递减,则 (t) (1)=0,故当 t1 时,g(t)0,则 g(t)在(1,+)递减, g(t )g(1)=0 符合题意;当 1 时,(t)= (1)lnt+210,解得 1t ,当 t(1, ),(t)
20、0, (t)在(1, )递增,(t )(1)=0;当 t(1, ),g(t )0,g(t)在(1, )递增,g(t )g(1)=0,精选高中模拟试卷第 15 页,共 17 页则有当 t(1, ),g(t)0 不合题意即有 0 【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键22【答案】 【解析】解:()若 4 人全是女生,共有 C74=35 种情况;若 4 人全是男生,共有 C84=70 种情况;故全为女生的概率为 = ()共 15 人,任意选出 4 名同学的方法总数是 C154,选出男生的人数为 X=0
21、,1,2,3,4P(X=0)= = ;P(X=1)= = ;P(X=2)= = ;P(X=3)= = ;P(X=4)= = 故 X 的分布列为X 0 1 2 3 4PEX=0 +1 +2 +3 +4 = 【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础23【答案】 【解析】解:()证明:BCD 中,CB=CD,BCD=120,CDB=30,EC=DE,DCE=30,BCE=90,ECBC,又平面 ABC平面 BCD,平面 ABC 与平面 BCD 的交线为 BC,EC平面 ABC,ECAB ()解:取 BC 的中点 O,BE 中点 F,连结 OA
22、,OF,AC=AB,AOBC,平面 ABC平面 BCD,平面 ABC平面 BCD=BC,精选高中模拟试卷第 16 页,共 17 页AO平面 BCD,O 是 BC 中点,F 是 BE 中点,OFBC ,以 O 为原点,OB 为 y 轴,OA 为 z 轴,建立空间直角坐标系,设 DE=2,则 A(0,0,1),B (0, ,0),C(0, ,0 ),D(3,2 ,0), =(0, ,1), =(3, ,0),设平面 ACD 的法向量为 =(x,y,z),则 ,取 x=1,得 =(1, ,3),又平面 BCD 的法向量 =(0,0,1),cos = = ,二面角 ACDB 的余弦值为 【点评】本小题
23、主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用本小题对考生的空间想象能力与运算求解能力有较高要求24【答案】 【解析】解:(1)设 h(x)=f(x)g(x)=lg (2016+x)lg(2016 x),h(x)的定义域为(2016,2016 );h(x) =lg(2016x)lg(2016+x)= h(x);f( x) g(x)为奇函数;(2)由 f(x)g(x)0 得,f(x)g(x);即 lg(2016+x) lg(2016 x);精选高中模拟试卷第 17 页,共 17 页 ;解得2016 x 0;使 f( x)g(x)0 成立 x 的集合为(2016,0)【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于 0,以及对数函数的单调性