1、精选高中模拟试卷第 1 页,共 19 页密云区高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 设公差不为零的等差数列 的前 项和为 ,若 ,则 ( )nanS423()a74SaA B C7 D1474145【命题意图】本题考查等差数列的通项公式及其前 项和,意在考查运算求解能力.2 若向量 =(3,m), =(2,1), ,则实数 m 的值为( )A B C2 D63 将函数 f(x)=3sin(2x+)( )的图象向右平移 ( 0)个单位长度后得到函数 g(x)的图象,若 f(x),g(x)的图象都经过点 P(0, ),则 的值不可能是( )A
2、 B C D4 利用独立性检验来考虑两个分类变量 X 和 Y 是否有关系时,通过查阅下表来确定断言 “X 和 Y 有关系” 的可信度,如果 k5.024,那么就有把握认为“X 和 Y 有关系”的百分比为( )P(K 2k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828A25% B75% C2.5% D97.5%5 A=x|x1,B=x|x 2 或 x0 ,则 AB=( )A(0,1) B( ,2)C(2, 0)
3、 D(,2)(0,1)6 若偶函数 f(x)在(,0)内单调递减,则不等式 f(1)f(lg x)的解集是( )A(0,10) B( ,10) C( ,+) D(0, ) (10,+ )7 在长方体 ABCDA 1B1C1D1中,底面是边长为 2 的正方形,高为 4,则点 A1到截面 AB1D1的距离是( )A B C D精选高中模拟试卷第 2 页,共 19 页8 以过椭圆 + =1(a b0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A相交 B相切 C相离 D不能确定9 已知随机变量 X 服从正态分布 N(2, 2),P (0X4)=0.8,则 P(X4)的值等于( )A0.1 B0
4、.2 C0.4 D0.610(2011 辽宁)设 sin( +)= ,则 sin2=( )A B C D11已知点 P(x,y)的坐标满足条件 ,(k 为常数),若 z=3x+y 的最大值为 8,则 k 的值为( )A B C 6 D612已知三棱锥 ABCO ,OA 、OB、OC 两两垂直且长度均为 6,长为 2 的线段 MN 的一个端点 M 在棱 OA上运动,另一个端点 N 在 BCO 内运动(含边界),则 MN 的中点 P 的轨迹与三棱锥的面所围成的几何体的体积为( )A B 或 36+ C36 D 或 36二、填空题13递增数列a n满足 2an=an1+an+1,(nN *,n1),
5、其前 n 项和为 Sn,a 2+a8=6,a 4a6=8,则 S10= 14在平面直角坐标系中, , ,记 ,其中 为坐标原(,)a(,2)b(,)|MObO点,给出结论如下:若 ,则 ;(1,4)(,)对平面任意一点 ,都存在 使得 ;M,(,)若 ,则 表示一条直线;,精选高中模拟试卷第 3 页,共 19 页 ;(1,)(,2)(1,5若 , ,且 ,则 表示的一条线段且长度为 02(,)2其中所有正确结论的序号是 15已知等比数列a n是递增数列, Sn是a n的前 n 项和若 a1,a 3是方程 x25x+4=0 的两个根,则 S6= 16长方体 ABCDA1B1C1D1的棱 AB=A
6、D=4cm,AA 1=2cm,则点 A1到平面 AB1D1的距离等于 cm17已知实数 x,y 满足 ,则目标函数 z=x3y 的最大值为 18下图是某算法的程序框图,则程序运行后输出的结果是_三、解答题19已知 f(x)=x 3+3ax2+3bx+c 在 x=2 处有极值,其图象在 x=1 处的切线与直线 6x+2y+5=0 平行(1)求函数的单调区间;(2)若 x1,3时,f (x) 14c2恒成立,求实数 c 的取值范围20如图,在四棱柱 ABCDA1B1C1D1中,底面 ABCD 是矩形,且 AD=2CD=2,AA 1=2,A 1AD= 若 O为 AD 的中点,且 CDA1O()求证:
7、A 1O平面 ABCD;()线段 BC 上是否存在一点 P,使得二面角 DA1AP 为 ?若存在,求出 BP 的长;不存在,说明理由精选高中模拟试卷第 4 页,共 19 页21(本题满分 15 分)已知抛物线 的方程为 ,点 在抛物线 上C2(0)ypx(1,2)RC(1)求抛物线 的方程;C(2)过点 作直线交抛物线 于不同于 的两点 , ,若直线 , 分别交直线(,1)QCRABRB于 , 两点,求 最小时直线 的方程:lyxMN【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.精选高中模拟试卷第 5 页,共 19 页22(本小题满
8、分 12 分)已知圆 ,直线22:15Cxy.:21740LmxymR(1)证明: 无论 取什么实数 , 与圆恒交于两点;L(2)求直线被圆 截得的弦长最小时 的方程.23已知 a0,a 1,命题 p:“函数 f(x)=a x在(0,+)上单调递减”,命题 q:“ 关于 x 的不等式 x22ax+0 对一切的 xR 恒成立”,若 pq 为假命题,pq 为真命题,求实数 a 的取值范围24(本小题满分 12 分)如图, 矩形 的两条对角线相交于点 , 边所在直线的方ABCD20MAB程为 点 在 边所在直线上.360xy1T(1)求 边所在直线的方程;AD(2)求矩形 外接圆的方程.BC精选高中
9、模拟试卷第 6 页,共 19 页精选高中模拟试卷第 7 页,共 19 页密云区高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】C.【解析】根据等差数列的性质, ,化简得 ,423111()2(2)aadad1ad,故选 C.1746273adS2 【答案】A【解析】解:因为向量 =(3,m ), =(2,1), ,所以3=2m,解得 m= 故选:A【点评】本题考查向量共线的充要条件的应用,基本知识的考查3 【答案】C【解析】函数 f(x)=sin(2x+)( )向右平移 个单位,得到 g(x)=sin (2x+2),因为两个函数都经过 P(0, ),
10、所以 sin= ,又因为 ,所以 = ,所以 g(x)=sin(2x+ 2),sin( 2)= ,所以 2=2k+ ,kZ,此时 =k,k Z,或 2=2k+ ,kZ,此时 =k ,kZ,故选:C【点评】本题考查的知识点是函数 y=Asin(x+)的图象变换,三角函数求值,难度中档精选高中模拟试卷第 8 页,共 19 页4 【答案】D【解析】解:k5、024,而在观测值表中对应于 5.024 的是 0.025,有 10.025=97.5%的把握认为 “X 和 Y 有关系”,故选 D【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目5 【
11、答案】D【解析】解:A=( ,1),B=( ,2)(0,+ ),AB=( , 2)(0,1 ),故选:D【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键6 【答案】D【解析】解:因为 f(x)为偶函数,所以 f(x)=f(|x|),因为 f(x)在(,0)内单调递减,所以 f(x)在(0, +)内单调递增,由 f( 1)f(lg x),得|lg x|1,即 lg x1 或 lg x1,解得 x10 或 0x 故选:D【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于 0,是个基础题7 【答案】C【解析】解:如图,设 A1C1B 1D1=O1,B
12、 1D1A 1O1, B1D1AA 1,B 1D1平面 AA1O1,故平面 AA1O1面 AB1D1,交线为 AO1,在面 AA1O1内过 B1作 B1HAO 1于 H,则易知 A1H 的长即是点 A1到截面 AB1D1的距离,在 RtA 1O1A 中,A 1O1= ,AO1=3 ,由 A1O1A1A=hAO1,可得 A1H= ,故选:C精选高中模拟试卷第 9 页,共 19 页【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题8 【答案】C【解析】解:设过右焦点 F 的弦为 AB,右准线为 l,A、B 在 l 上的射影分别为 C、D连接 AC、BD ,设
13、AB 的中点为 M,作 MNl 于 N根据圆锥曲线的统一定义,可得= =e,可得|AF|+|BF|AC|+|BD|,即|AB|AC|+|BD| ,以 AB 为直径的圆半径为 r= |AB|,|MN|= (|AC|+|BD|)圆 M 到 l 的距离|MN|r,可得直线 l 与以 AB 为直径的圆相离故选:C【点评】本题给出椭圆的右焦点 F,求以经过 F 的弦 AB 为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题9 【答案】A【解析】解:随机变量 服从正态分布 N(2,o 2),正态曲线的对称轴是 x=2P(0X4) =0.8,
14、精选高中模拟试卷第 10 页,共 19 页P( X 4)= (10.8)=0.1,故选 A10【答案】A【解析】解:由 sin( +) =sin cos+cos sin= (sin+cos )= ,两边平方得:1+2sincos = ,即 2sincos= ,则 sin2=2sincos= 故选 A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题11【答案】 B【解析】解:画出 x,y 满足的可行域如下图:z=3x+y 的最大值为 8,由 ,解得 y=0,x= ,( ,0)代入 2x+y+k=0,k= ,故选 B【点评】如果约
15、束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去 x,y 后,即可求出参数的值精选高中模拟试卷第 11 页,共 19 页12【答案】D【解析】【分析】由于长为 2 的线段 MN 的一个端点 M 在棱 OA 上运动,另一个端点 N 在BCO 内运动(含边界),有空间想象能力可知 MN 的中点 P 的轨迹为以 O 为球心,以 1 为半径的球体,故 MN 的中点 P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可【解答】解:因为长为 2 的线段 MN 的一个端点 M
16、在棱 OA 上运动,另一个端点 N 在BCO 内运动(含边界),有空间想象能力可知 MN 的中点 P 的轨迹为以 O 为球心,以 1 为半径的球体,则 MN 的中点 P 的轨迹与三棱锥的面所围成的几何体可能为该球体的 或该三棱锥减去此球体的 ,即: 或故选 D二、填空题13【答案】 35 【解析】解:2a n=an1+an+1,( nN *,n1),数列 an为等差数列,又 a2+a8=6,2a 5=6,解得:a 5=3,又 a4a6=(a 5d)(a 5+d)=9 d2=8,d2=1,解得:d=1 或 d=1(舍去)an=a5+(n5)1=3+ (n 5) =n2a1=1,S10=10a1+
17、 =35故答案为:35【点评】本题考查数列的求和,判断出数列a n为等差数列,并求得 an=2n1 是关键,考查理解与运算能力,属于中档题14【答案】【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力由 得 , ,错误;(1,4)ab1242与 不共线,由平面向量基本定理可得,正确;记 ,由 得 ,点 在过 点与 平行的直线上,正确;OAMabAMAb由 得, , 与 不共线,ab(1)()0ba精选高中模拟试卷第 12 页,共 19 页 , ,正确;122(1,5)ab设 ,则有 , , 且 , 表示的一(,)Mxyx213xy20xy260y(,)条线段且线段的
18、两个端点分别为 、 ,其长度为 ,错误(2,4),)515【答案】63【解析】解:解方程 x25x+4=0,得 x1=1,x 2=4因为数列a n是递增数列,且 a1,a 3是方程 x25x+4=0 的两个根,所以 a1=1,a 3=4设等比数列a n的公比为 q,则 ,所以 q=2则 故答案为 63【点评】本题考查了等比数列的通项公式,考查了等比数列的前 n 项和,是基础的计算题16【答案】 【解析】解:由题意可得三棱锥 B1AA1D1的体积是 = ,三角形 AB1D1的面积为 4 ,设点 A1到平面 AB1D1的距离等于 h,则 ,则 h=故点 A1到平面 AB1D1的距离为 故答案为:
19、17【答案】 5 【解析】解:由 z=x3y 得 y= ,作出不等式组对应的平面区域如图(阴影部分):精选高中模拟试卷第 13 页,共 19 页平移直线 y= ,由图象可知当直线 y= 经过点 C 时,直线 y= 的截距最小,此时 z 最大,由 ,解得 ,即 C(2, 1)代入目标函数 z=x3y,得 z=23(1) =2+3=5,故答案为:518【答案】 27【解析】由程序框图可知:符合,跳出循环43三、解答题19【答案】 【解析】解:(1)由题意:f(x)=3x 2+6ax+3b 直线 6x+2y+5=0 的斜率为3;由已知 所以 (3 分)所以由 f(x) =3x26x0 得心 x0 或
20、 x2;所以当 x(0,2)时,函数单调递减;当 x(,0),(2,+ )时,函数单调递增 (6 分)S0 1 6 27n1 2 3 4精选高中模拟试卷第 14 页,共 19 页(2)由(1)知,函数在 x(1,2)时单调递减,在 x(2,3)时单调递增;所以函数在区间1,3有最小值 f(2)=c4 要使 x1,3,f(x)14c 2恒成立只需 14c2c 4 恒成立,所以 c 或 c1故 c 的取值范围是c|c 或 c1(12 分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题20【答案】 【解析
21、】满分(13 分)()证明:A 1AD= ,且 AA1=2,AO=1,A 1O= = ,(2 分) +AD2=AA12,A 1OAD(3 分)又 A1OCD,且 CDAD=D,A 1O平面 ABCD(5 分)()解:过 O 作 OxAB,以 O 为原点,建立空间直角坐标系 Oxyz(如图),则 A(0,1,0),A 1(0,0, ),(6 分)设 P(1,m,0)m 1,1 ,平面 A1AP 的法向量为 =(x,y,z ), = , =(1,m+1,0),且取 z=1,得 = (8 分)又 A1O平面 ABCD,A 1O平面 A1ADD1平面 A1ADD1平面 ABCD又 CDAD,且平面 A
22、1ADD1平面 ABCD=AD,CD平面 A1ADD1精选高中模拟试卷第 15 页,共 19 页不妨设平面 A1ADD1的法向量为 =(1,0,0)(10 分)由题意得 = = ,(12 分)解得 m=1 或 m=3(舍去)当 BP 的长为 2 时,二面角 DA1AP 的值为 (13 分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想21【答案】(1) ;(2) 4yx20y【解析】(1)点 在抛物线 上, , 2 分(1,)RC1p即抛物线 的方程为 ;5 分C精选高中模拟试卷
23、第 16 页,共 19 页精选高中模拟试卷第 17 页,共 19 页22【答案】(1)证明见解析;(2) 250xy【解析】试题分析:(1) 的方程整理为 ,列出方程组,得出直线过圆内一点,即L47m可证明;(2)由圆心 ,当截得弦长最小时, 则 ,利用直线的点斜式方程,即可求解直线的1MLAM方程.1111(2)圆心 ,当截得弦长最小时, 则 ,12MLAM精选高中模拟试卷第 18 页,共 19 页由 得 的方程 即 . 12AMkL123yx50y考点:直线方程;直线与圆的位置关系.23【答案】 【解析】解:若 p 为真,则 0a1;若 q 为真,则=4a 210,得 ,又 a0,a1,
24、因为 pq 为假命题,pq 为真命题,所以 p,q 中必有一个为真,且另一个为假当 p 为真,q 为假时,由 ;当 p 为假,q 为真时, 无解 综上,a 的取值范围是 【点评】1求解本题时,应注意大前提“a0,a 1”,a 的取值范围是在此条件下进行的24【答案】(1) ;(2) 30xy28xy【解析】试题分析:(1)由已知中 边所在直线方程为 ,且 与 垂直,结合点 在直AB360ADB1,T线 上,可得到 边所在直线的点斜式方程,即可求得 边所在直线的方程;(2)根据矩形的性质可AD得矩形 外接圆圆心纪委两条直线的交点 ,根据(1)中直线,即可得到圆的圆心和半径,即BC,M可求得矩形
25、外接圆的方程.(2)由 解得点 的坐标为 ,3602xyA02因为矩形 两条对角线的交点为 ,ABCDM精选高中模拟试卷第 19 页,共 19 页所以 为距形 外接圆的圆心, 又 ,MABCD220AM从而距形 外接圆的方程为 .128xy考点:直线的点斜式方程;圆的方程的求解.【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中 边所在的直线方程以及 与 垂直,求出直线ABADB的斜率;(2)中的关键是求出 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题AD和解答问题的能力,以及推理与运算能力.