1、精选高中模拟试卷第 1 页,共 18 页宁津县第三中学校 2018-2019 学年上学期高二数学 12 月月考试题含解析班级_ 姓名_ 分数_一、选择题1 抛物线 E:y 2=2px(p0)的焦点为 F,点 A(0,2),若线段 AF 的中点 B 在抛物线上,则|BF|= ( )A B C D2 设集合 S=|x|x 1 或 x5,T=x|axa+8 ,且 ST=R,则实数 a 的取值范围是( )A3 a 1 B 3a1 Ca 3 或 a1 Da3 或 a 13 已知集合 A=0,m,m 23m+2,且 2A ,则实数 m 为( )A2 B3 C0 或 3 D0,2,3 均可4 Sn是等差数列
2、a n的前 n 项和,若 3a82a 74,则下列结论正确的是( )AS 1872 BS 1976CS 2080 DS 21845 若椭圆 + =1 的离心率 e= ,则 m 的值为( )A1 B 或 C D3 或6 已知函数 f(x)=Asin ( x )(A0, 0)的部分图象如图所示,EFG 是边长为 2 的等边三角形,为了得到 g(x)=Asin x 的图象,只需将 f(x)的图象( )A向左平移 个长度单位 B向右平移 个长度单位C向左平移 个长度单位 D向右平移 个长度单位7 抛物线 x2=4y 的焦点坐标是( )A(1,0) B( 0,1) C( ) D( )精选高中模拟试卷第
3、2 页,共 18 页8 如图,四面体 DABC 的体积为 ,且满足 ACB=60,BC=1,AD+ =2,则四面体 DABC 中最长棱的长度为( )A B2 C D39 若函数 f(x)= 2x3+ax2+1 存在唯一的零点,则实数 a 的取值范围为( )A0,+ ) B0,3 C( 3,0 D(3,+)10如图所示,网格纸表示边长为 1 的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A B6103560+3514C D+4【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力11若直线 y=kxk 交抛物线 y2=4x 于 A,B 两点,且
4、线段 AB 中点到 y 轴的距离为 3,则|AB|= ( )A12 B10 C8 D612已知偶函数 f(x)满足当 x0 时,3f (x) 2f( ) = ,则 f( 2)等于( )精选高中模拟试卷第 3 页,共 18 页A B C D二、填空题13若关于 x,y 的不等式组 (k 是常数)所表示的平面区域的边界是一个直角三角形,则 k= 14设 f(x)是(x 2+ ) 6展开式的中间项,若 f(x)mx 在区间 , 上恒成立,则实数 m 的取值范围是 15函数 f(x)=a x+4 的图象恒过定点 P,则 P 点坐标是 16设 x(0,),则 f(x)=cos 2x+sinx 的最大值是
5、 17已知实数 x,y 满足约束条 ,则 z= 的最小值为 18已知函数 ,且 ,则 , 的大小关系()f23)512|x1()fx2f是 三、解答题19(1)求与椭圆 有相同的焦点,且经过点(4,3)的椭圆的标准方程(2)求与双曲线 有相同的渐近线,且焦距为 的双曲线的标准方程20中国高铁的某个通讯器材中配置有 9 个相同的元件,各自独立工作,每个元件正常工作的概率为p(0p1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率精选高中模拟试卷第 4 页,共 18 页()设通讯器械上正常工作的元件个数为 X,求 X 的数学期望,并求该通讯器械
6、正常工作的概率 P(列代数式表示)()现为改善通讯器械的性能,拟增加 2 个元件,试分析这样操作能否提高通讯器械的有效率21如图所示,在正方体 ABCDA1B1C1D1中,E、F 分别是棱 DD1、C 1D1的中点()证明:平面 ADC1B1平面 A1BE;()证明:B 1F平面 A1BE;()若正方体棱长为 1,求四面体 A1B1BE 的体积22在平面直角坐标系 xOy 中,点 B 与点 A( 1,1)关于原点 O 对称,P 是动点,且直线 AP 与 BP 的斜率之积等于 ()求动点 P 的轨迹方程;()设直线 AP 和 BP 分别与直线 x=3 交于点 M,N ,问:是否存在点 P 使得P
7、AB 与PMN 的面积相等?若存在,求出点 P 的坐标;若不存在,说明理由精选高中模拟试卷第 5 页,共 18 页23已知数列a n是各项均为正数的等比数列,满足 a3=8,a 3a22a1=0()求数列a n的通项公式()记 bn=log2an,求数列a nbn的前 n 项和 Sn24已知命题 p:不等式|x 1|m1 的解集为 R,命题 q:f(x)=(52m) x是减函数,若 p 或 q 为真命题,p 且 q 为假命题,求实数 m 的取值范围精选高中模拟试卷第 6 页,共 18 页宁津县第三中学校 2018-2019 学年上学期高二数学 12 月月考试题含解析(参考答案)一、选择题1 【
8、答案】D【解析】解:依题意可知 F 坐标为( ,0)B 的坐标为( ,1)代入抛物线方程得 =1,解得 p= ,抛物线准线方程为 x= ,所以点 B 到抛物线准线的距离为 = ,则 B 到该抛物线焦点的距离为 故选 D2 【答案】A【解析】解:S=|x|x 1 或 x5,T=x|axa+8 ,且 ST=R , ,解得: 3a 1故选:A【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题3 【答案】B【解析】解:A=0,m,m 23m+2,且 2A,m=2 或 m23m+2=2,解得 m=2 或 m=0 或 m=3当 m=0 时,集合 A=0,0,2 不成立当 m=2 时,集
9、合 A=0,0,2 不成立当 m=3 时,集合 A=0,3,2 成立故 m=3故选:B【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证精选高中模拟试卷第 7 页,共 18 页4 【答案】【解析】选 B.3a82a 74,3( a17d)2(a 16d)4,即 a19d4,S 1818a 1 18(a 1 d)不恒为常数1817d2172S1919a 1 19( a19d)76,1918d2同理 S20,S 21均不恒为常数,故选 B.5 【答案】D【解析】解:当椭圆 + =1 的焦点在 x 轴上时,a= ,b= ,c=由 e= ,得 = ,即 m=3当椭圆 + =1
10、的焦点在 y 轴上时,a= ,b= ,c=由 e= ,得 = ,即 m= 故选 D【点评】本题主要考查了椭圆的简单性质解题时要对椭圆的焦点在 x 轴和 y 轴进行分类讨论6 【答案】 A【解析】解:EFG 是边长为 2 的正三角形,三角形的高为 ,即 A= ,函数的周期 T=2FG=4,即 T= =4,解得 = = ,即 f(x)=Asin x= sin( x ),g(x)= sin x,由于 f(x)= sin( x )= sin (x ),精选高中模拟试卷第 8 页,共 18 页故为了得到 g(x)=Asin x 的图象,只需将 f(x)的图象向左平移 个长度单位故选:A【点评】本题主要考
11、查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题7 【答案】B【解析】解:抛物线 x2=4y 中,p=2, =1,焦点在 y 轴上,开口向上,焦点坐标为 (0,1),故选:B【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线 x2=2py 的焦点坐标为(0, ),属基础题8 【答案】 B【解析】解:因为 AD( BCACsin60) VDABC= ,BC=1,即 AD 1,因为 2=AD+ 2 =2,当且仅当 AD= =1 时,等号成立,这时 AC= , AD=1,且 AD面 ABC,所以 CD=2,AB= ,得 BD= ,故最长棱的长为 2故选 B【点
12、评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题9 【答案】 D【解析】解:令 f(x)= 2x3+ax2+1=0,易知当 x=0 时上式不成立;故 a= =2x ,精选高中模拟试卷第 9 页,共 18 页令 g(x)=2x ,则 g(x)=2+ =2 ,故 g(x)在(, 1)上是增函数,在(1, 0)上是减函数,在(0,+)上是增函数;故作 g(x)=2x 的图象如下,g(1) =21=3,故结合图象可知,a3 时,方程 a=2x 有且只有一个解,即函数 f(x)= 2x3+ax2+1 存在唯一的零点,故选:D10【答案】C
13、【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长 ,宽 的矩形,高为 3,且 平62VE面 ,如图所示,所以此四棱锥表面积为 AB1S=20+1345+26精选高中模拟试卷第 10 页,共 18 页,故选 C61035=+46461010113 26EVD CBA11【答案】C【解析】解:直线 y=kxk 恒过(1,0),恰好是抛物线 y2=4x 的焦点坐标,设 A(x 1,y 1) B(x 2,y 2) 抛物 y2=4x 的线准线 x=1,线段 AB 中点到 y 轴的距离为 3,x 1+x2=6,|AB|=|AF|+|BF|=x 1+x2+2=8,故选:C【点评】本题的考点是函数
14、的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离12【答案】D【解析】解:当 x0 时,3f(x)2f( )= ,3f( ) 2f(x)= = ,3+2 得:5f(x)= ,故 f(x)= ,又函数 f(x)为偶函数,故 f( 2)=f(2)= ,故选:D精选高中模拟试卷第 11 页,共 18 页【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当 x0 时,函数 f(x)的解析式,是解答的关键二、填空题13【答案】 1 或 0 【解析】解:满足约束条件 的可行域如下图阴影部分所示:kxy+10 表示地(0,1)点的直线 kx
15、y+1=0 下方的所有点(包括直线上的点)由关于 x,y 的不等式组 (k 是常数)所表示的平面区域的边界是一个直角三角形,可得直线 kxy+1=0 与 y 轴垂直,此时 k=0 或直线 kxy+1=0 与 y=x 垂直,此时 k=1综上 k=1 或 0故答案为:1 或 0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线 kxy+1=0 与 y 轴垂直或与 y=x 垂直,是解答的关键14【答案】 5,+) 【解析】二项式定理【专题】概率与统计;二项式定理精选高中模拟试卷第 12 页,共 18 页【分析】由题意可得 f(x) = x3,再由条件可得 m x2 在区
16、间 , 上恒成立,求得 x2在区间 ,上的最大值,可得 m 的范围【解答】解:由题意可得 f( x)= x6 = x3由 f(x)mx 在区间 , 上恒成立,可得 m x2 在区间 , 上恒成立,由于 x2在区间 , 上的最大值为 5,故 m5,即 m 的范围为5,+),故答案为:5,+)【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题15【答案】 (0,5) 【解析】解:y=a x的图象恒过定点(0,1),而 f(x)=a x+4 的图象是把 y=ax的图象向上平移 4 个单位得到的,函数 f(x)=a x+4 的图象恒过定点 P
17、(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题16【答案】 【解析】解:f(x)=cos 2x+sinx=1sin2x+sinx= + ,故当 sinx= 时,函数 f(x)取得最大值为 ,故答案为: 【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题17【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)精选高中模拟试卷第 13 页,共 18 页由 z= =32x+y,设 t=2x+y,则 y=2x+t,平移直线 y=2x+t,由图象可知当直线 y=2x+t 经过点 B 时,直线 y=2x+t 的截距最小,此时 t
18、 最小由 ,解得 ,即 B( 3,3),代入 t=2x+y 得 t=2(3)+3=3t 最小为3,z 有最小值为 z= =33= 故答案为: 【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法18【答案】 111.Com12()fxf【解析】精选高中模拟试卷第 14 页,共 18 页考点:不等式,比较大小【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置对于函数图象判断类似题
19、要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等三、解答题19【答案】 【解析】解:(1)由所求椭圆与椭圆 有相同的焦点,设椭圆方程 ,由(4,3)在椭圆上得 ,则椭圆方程为 ;(2)由双曲线 有相同的渐近线,设所求双曲线的方程为 =1(0),由题意可得 c2=4|+9|=13,解得 =1即有双曲线的方程为 =1 或 =120【答案】 【解析】解:()由题意可知:X B(9,p),故 EX=9p在通讯器械配置的 9 个元件中,恰有 5 个元件正常工作的概率为: 在通讯器械配置的 9 个元件中,恰有 6 个元件正常工作的概率为: 在通讯器械配置的 9 个元
20、件中,恰有 7 个元件正常工作的概率为: 精选高中模拟试卷第 15 页,共 18 页在通讯器械配置的 9 个元件中,恰有 8 个元件正常工作的概率为: 在通讯器械配置的 9 个元件中,恰有 9 个元件正常工作的概率为: 通讯器械正常工作的概率 P= ;()当电路板上有 11 个元件时,考虑前 9 个元件,为使通讯器械正常工作,前 9 个元件中至少有 4 个元件正常工作若前 9 个元素有 4 个正常工作,则它的概率为: 此时后两个元件都必须正常工作,它的概率为: p2;若前 9 个元素有 5 个正常工作,则它的概率为: 此时后两个元件至少有一个正常工作,它的概率为: ;若前 9 个元素至少有 6
21、 个正常工作,则它的概率为: ;此时通讯器械正常工作,故它的概率为:P= p2+ + ,可得 PP= p2+ ,= = 故当 p= 时,P=P ,即增加 2 个元件,不改变通讯器械的有效率;当 0p 时,PP ,即增加 2 个元件,通讯器械的有效率降低;当 p 时,PP ,即增加 2 个元件,通讯器械的有效率提高【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目21【答案】 【解析】()证明:ABCDA 1B1C1D1为正方体,B 1C1平面 ABB1A1;A 1B平面 ABB1A1,B 1C1A 1B又A 1BAB 1,B 1C1AB1=B
22、1,A 1B平面 ADC1B1,A 1B平面 A1BE,精选高中模拟试卷第 16 页,共 18 页平面 ADC1B1平面 A1BE;()证明:连接 EF,EF ,且 EF= ,设 AB1A1B=O,则 B1OC 1D,且 ,EFB 1O,且 EF=B1O,四边形 B1OEF 为平行四边形B 1F OE又B 1F平面 A1BE,OE平面 A1BE,B 1F 平面 A1BE,()解: = = = = 22【答案】 【解析】解:()因为点 B 与 A(1,1)关于原点 O 对称,所以点 B 得坐标为(1, 1)设点 P 的坐标为(x,y)化简得 x2+3y2=4(x1)故动点 P 轨迹方程为 x2+
23、3y2=4(x1)()解:若存在点 P 使得PAB 与PMN 的面积相等,设点 P 的坐标为(x 0,y 0)则 因为 sinAPB=sin MPN,所以所以 =精选高中模拟试卷第 17 页,共 18 页即(3x 0) 2=|x021|,解得因为 x02+3y02=4,所以故存在点 P 使得PAB 与 PMN 的面积相等,此时点 P 的坐标为 【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题23【答案】 【解析】解:()设数列a n的公比为 q,由 an0 可得 q0,且 a3a22a1=0,化简得 q2q2=0,解得 q=2 或 q=1(舍),a 3=a1q2=4a1=8
24、,a 1=2,数列a n是以首项和公比均为 2 的等比数列,a n=2n;()由(I)知 bn=log2an= =n,a nbn=n2n,S n=121+222+323+(n1)2 n1+n2n,2Sn=122+223+(n2)2 n1+(n1) 2n+n2n+1,两式相减,得S n=21+22+23+2n1+2nn2n+1,S n= n2n+1,S n=2+(n1)2 n+1【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题24【答案】【解析】解:不等式|x1| m1 的解集为 R,须 m1 0,即 p 是真 命题,m 1f(x)=(52m) x是减函数,须 52m 1 即 q 是真命题,m 2,由于 p 或 q 为真命题,p 且 q 为假命题,故 p、q 中一个真,另一个为假命题 因此,1m2精选高中模拟试卷第 18 页,共 18 页【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键属中档题