1、精选高中模拟试卷第 1 页,共 17 页右玉县高级中学 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 用反证法证明命题:“已知 a、bN *,如果 ab 可被 5 整除,那么 a、b 中至少有一个能被 5 整除”时,假设的内容应为( )Aa、b 都能被 5 整除 Ba 、b 都不能被 5 整除Ca、 b 不都能被 5 整除 Da 不能被 5 整除2 已知 f(x),g(x)分别是定义在 R 上的偶函数和奇函数,且 f(x)g(x)=x 32x2,则 f(2)+g(2)=( )A16 B16 C8 D83 设集合 M=x|x1,N=x|x k,若 MN,
2、则 k 的取值范围是( )A(,1 B1,+) C( 1, +) D(, 1)4 在三棱柱 中,已知 平面 ,此三棱1A1A1=23,2BACBA, ,柱各个顶点都在一个球面上,则球的体积为( )A B C. D32653125 如图,在长方形 ABCD 中,AB= ,BC=1 ,E 为线段 DC 上一动点,现将AED 沿 AE 折起,使点 D在面 ABC 上的射影 K 在直线 AE 上,当 E 从 D 运动到 C,则 K 所形成轨迹的长度为( )A B C D6 “1 x2”是“x2”成立的( )A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件7 若函数 yfx的定义
3、域是 1,206,则函数 1gxf的定义域是( )A 0,216 B 5 C ,206 D 1,2078 sin(510)= ( )A B C D精选高中模拟试卷第 2 页,共 17 页9 已知函数 f(x)是定义在 R 上的奇函数,当 x0 时, .若,f(x-1)f(x),则实数 a 的取值范围为A B C D 10如果点 P(sin cos,2cos )位于第二象限,那么角 所在象限是( )A第一象限 B第二象限 C第三象限 D第四象限11在区域 内任意取一点 P(x,y),则 x2+y21 的概率是( )A0 B C D12已知集合 A=0,1,2,则集合 B=xy|xA,yA 中元素
4、的个数是( )A1 B3 C5 D9二、填空题13已知曲线 y=(a3)x 3+lnx 存在垂直于 y 轴的切线,函数 f(x)=x 3ax23x+1 在1,2 上单调递减,则 a 的范围为 14已知函数 y=f(x),x I,若存在 x0I,使得 f(x 0) =x0,则称 x0 为函数 y=f(x)的不动点;若存在x0I,使得 f( f(x 0)=x 0,则称 x0 为函数 y=f(x)的稳定点则下列结论中正确的是 (填上所有正确结论的序号) ,1 是函数 g(x)=2x 21 有两个不动点;若 x0 为函数 y=f(x)的不动点,则 x0 必为函数 y=f(x)的稳定点;若 x0 为函数
5、 y=f(x)的稳定点,则 x0 必为函数 y=f(x)的不动点;函数 g(x)=2x 21 共有三个稳定点;若函数 y=f(x)在定义域 I 上单调递增,则它的不动点与稳定点是完全相同15已知等差数列a n中,a 3= ,则 cos(a 1+a2+a6)= 精选高中模拟试卷第 3 页,共 17 页16设某总体是由编号为 的 20 个个体组成,利用下面的随机数表选取 个个体,选取方01,29,06法是从随机数表第 1 行的第 3 列数字开始从左到右依次选取两个数字,则选出来的第 6 个个体编号为_【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想17调查某公司的四名推销员,其工作年限与
6、年推销金额如表 推销员编号 1 2 3 4工作年限 x/(年) 3 5 10 14年推销金额 y/(万元) 2 3 7 12由表中数据算出线性回归方程为 = x+ 若该公司第五名推销员的工作年限为 8 年,则估计他(她)的年推销金额为 万元18在空间直角坐标系中,设 , ,且 ,则 .)1,3(,mA)1,(B2|Am三、解答题19已知 m0,函数 f(x)=2|x 1|2x+m|的最大值为 3()求实数 m 的值;()若实数 a,b,c 满足 a2b+c=m,求 a2+b2+c2 的最小值20一个几何体的三视图如图所示,已知正(主)视图是底边长为 1 的平行四边形,侧(左)视图是一个长为 ,
7、宽为 1 的矩形,俯视图为两个边长为 1 的正方形拼成的矩形3(1)求该几何体的体积 ;111V(2)求该几何体的表面积 S1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238精选高中模拟试卷第 4 页,共 17 页21如图所示的几何体中,EA平面 ABC,BD平面 ABC,AC=BC=BD=2AE= ,M 是 AB 的中点(1)求证:CM EM;(2)求 MC 与平面 EAC 所成的角精选高中模拟试卷第 5 页,共 17 页22本小题满分 12 分 设函数 ()lnxfea讨论 的导函数 零点个数;()fxf
8、x证明:当 时,0a()2la23如图,在五面体 ABCDEF 中,四边形 ABCD 是边长为 4 的正方形,EF AD,平面 ADEF平面 ABCD,且 BC=2EF,AE=AF,点 G 是 EF 的中点()证明:AG平面 ABCD;()若直线 BF 与平面 ACE 所成角的正弦值为 ,求 AG 的长24已知函数 f(x)= (1)求函数 f(x)的最小正周期及单调递减区间;(2)当 时,求 f(x)的最大值,并求此时对应的 x 的值精选高中模拟试卷第 6 页,共 17 页精选高中模拟试卷第 7 页,共 17 页右玉县高级中学 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)
9、一、选择题1 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“ a,bN,如果 ab 可被 5 整除,那么 a,b 至少有 1 个能被 5 整除”的否定是“ a,b 都不能被 5 整除”故选:B2 【答案】B【解析】解:f(x),g( x)分别是定义在 R 上的偶函数和奇函数,且 f(x)g(x)=x 32x2,f( 2)g(2)=( 2) 32( 2) 2=16即 f(2)+g (2)=f( 2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力3 【答案】B【解析】解:M=x|x 1,N=x|x k
10、,若 MN,则 k1k 的取值范围是1,+ )故选:B【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题4 【答案】A【解析】精选高中模拟试卷第 8 页,共 17 页考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.5 【答案】 D【解析】解:由题意,将AED 沿 AE 折起,使平面 AED平面 ABC,在平面 AED 内过
11、点 D 作DKAE ,K 为垂足,由翻折的特征知,连接 DK,则 DKA=90,故 K 点的轨迹是以 AD为直径的圆上一弧,根据长方形知圆半径是 ,如图当 E 与 C 重合时,AK= = ,取 O 为 AD的中点,得到 OAK 是正三角形故 K0A= ,K0D= ,其所对的弧长为 = ,故选:D精选高中模拟试卷第 9 页,共 17 页6 【答案】A【解析】解:设 A=x|1x2 ,B=x|x2,AB,故“1 x 2” 是 “x2”成立的充分不必要条件故选 A【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关
12、键7 【答案】B 【解析】8 【答案】C【解析】解:sin(510) =sin(150)= sin150 =sin30 = ,故选:C9 【答案】 B【解析】当 x0 时,f(x)= ,由 f(x )=x3a 2,x 2a 2,得 f(x )a 2;当 a2x2a 2时,f (x)=a 2;由 f(x )=x ,0xa 2,得 f(x )a 2。精选高中模拟试卷第 10 页,共 17 页当 x0 时, 。函数 f(x)为奇函数,当 x0 时, 。对 xR,都有 f(x1 )f(x),2a2(4a 2)1,解得: 。故实数 a 的取值范围是 。10【答案】D【解析】解:P(sin cos,2co
13、s )位于第二象限,sincos0,cos0,sin0,是第四象限角故选:D【点评】本题考查了象限角的三角函数符号,属于基础题11【答案】C【解析】解:根据题意,如图,设 O(0,0)、A (1,0 )、B (1,1)、C(0,1),分析可得区域 表示的区域为以正方形 OABC 的内部及边界,其面积为 1;x2+y21 表示圆心在原点,半径为 1 的圆,在正方形 OABC 的内部的面积为 = ,由几何概型的计算公式,可得点 P(x,y)满足 x2+y21 的概率是 = ;故选 C精选高中模拟试卷第 11 页,共 17 页【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐
14、标系下的图形的面积,进而由其公式计算12【答案】C【解析】解:A=0,1,2,B=xy|xA ,yA,当 x=0,y 分别取 0,1,2 时,xy 的值分别为 0, 1,2;当 x=1,y 分别取 0,1,2 时,xy 的值分别为 1,0,1;当 x=2,y 分别取 0,1,2 时,xy 的值分别为 2,1,0;B=2,1,0,1,2,集合 B=xy|xA,yA中元素的个数是 5 个故选 C二、填空题13【答案】 【解析】解:因为 y=(a3) x3+lnx 存在垂直于 y 轴的切线,即 y=0 有解,即 y=在 x0 时有解,所以 3(a3)x 3+1=0,即 a30,所以此时 a3函数 f
15、(x)=x 3ax23x+1 在1,2 上单调递减,则 f(x)0 恒成立,即 f(x)=3x 22ax30 恒成立,即 ,因为函数 在1,2上单调递增,所以函数 的最大值为 ,所以 ,所以 综上 故答案为: 【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用14【答案】 【解析】解:对于,令 g(x)=x,可得 x= 或 x=1,故正确;精选高中模拟试卷第 12 页,共 17 页对于,因为 f(x 0)=x 0,所以 f(f (x 0)=f(x 0)=x 0,即 f(f (x 0)=x 0,故 x0 也是函数 y=f(x)的稳定点,故正确;对于,g(x)
16、=2x 21,令 2(2x 21) 21=x,因为不动点必为稳定点,所以该方程一定有两解 x= ,1,由此因式分解,可得(x1)( 2x+1)(4x 2+2x1)=0还有另外两解 ,故函数 g(x)的稳定点有 ,1, ,其中 是稳定点,但不是不动点,故错误;对于,若函数 y=f(x)有不动点 x0,显然它也有稳定点 x0;若函数 y=f(x)有稳定点 x0,即 f(f (x 0)=x 0,设 f(x 0)=y 0,则 f(y 0)=x 0即(x 0,y 0)和(y 0,x 0)都在函数 y=f(x)的图象上,假设 x0y 0,因为 y=f(x)是增函数,则 f(x 0)f (y 0),即 y0
17、x 0,与假设矛盾;假设 x0y 0,因为 y=f(x)是增函数,则 f(x 0)f (y 0),即 y0x 0,与假设矛盾;故 x0=y0,即 f(x 0)=x 0,y=f(x)有不动点 x0,故 正确故答案为:【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力15【答案】 【解析】解:数列a n为等差数列,且 a3= ,a1+a2+a6=3a1+6d=3(a 1+2d) =3a3=3 = ,cos(a 1+a2+a6)=cos = 故答案是: 16【答案】19【解析】由题意可得,选取的这 6 个个体分别为 18,07,17,16,09,19,故选出的第 6 个个体编
18、号为 1917【答案】 【解析】解:由条件可知 = (3+5+10+14)=8, = (2+3+7+12 )=6,代入回归方程,可得 a= ,所以 = x ,精选高中模拟试卷第 13 页,共 17 页当 x=8 时,y= ,估计他的年推销金额为 万元故答案为: 【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题18【答案】1【解析】试题分析: ,解得: ,故填:1.213122mAB 1m考点:空间向量的坐标运算三、解答题19【答案】 【解析】解:()f(x)=2|x1| |2x+m|=|2x2|2x+m|(2
19、x2) (2x+m)|=|m+2|m0,f( x) |m+2|=m+2,当 x=1 时取等号,f(x) max=m+2,又 f(x)的最大值为 3,m+2=3,即 m=1()根据柯西不等式得:(a 2+b2+c2)1 2+(2) 2+12(a2b+c) 2,a2b+c=m=1 , ,当 ,即 时取等号,a 2+b2+c2 的最小值为 【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题20【答案】(1) ;(2) 363【解析】精选高中模拟试卷第 14 页,共 17 页(2)由三视图可知,该平行六面体中 平面 , 平面 ,1ADBCD1BC ,侧面 , 均为矩形,1
20、11(32)63S考点:几何体的三视图;几何体的表面积与体积【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键21【答案】 【解析】(1)证明:AC=BC= AB,ABC 为等腰直角三角形,M 为 AB 的中点,AM=BM=CM,CM AB,EA平面 ABC,EAAC,设 AM=BM=CM=1,则有 AC= ,AE= AC= ,精选高中模拟试卷第 15 页,共 17 页在
21、 Rt AEC 中,根据勾股定理得:EC= = ,在 Rt AEM 中,根据勾股定理得:EM= = ,EM 2+MC2=EC2,CMEM;(2)解:过 M 作 MNAC ,可得MCA 为 MC 与平面 EAC 所成的角,则 MC 与平面 EAC 所成的角为 4522【答案】【解析】: ,因为定义域为 , ()xafe(0,)有解 即 有解. 令 , ,()0xfx xhe()1)xe当 ,()0()hh所以,当 时, 无零点; 当 时,有唯一零点.a,f 0a由可知,当 时,设 在 上唯一零点为 ,fx,)0x当 , 在 为增函数;0(,)(xfx()0当 , 在 为减函数.0,f,00xxa
22、e0 00 00()lnln(ln)ln2lx xaafe ae23【答案】 【解析】(本小题满分 12 分)()证明:因为 AE=AF,点 G 是 EF 的中点,所以 AGEF精选高中模拟试卷第 16 页,共 17 页又因为 EFAD,所以 AG AD因为平面 ADEF平面 ABCD,平面 ADEF平面 ABCD=AD,AG平面 ADEF,所以 AG平面 ABCD()解:因为 AG平面 ABCD,ABAD,所以 AG、 AD、AB 两两垂直以 A 为原点,以 AB,AD, AG 分别为 x 轴、y 轴和 z 轴,如图建立空间直角坐标系则 A(0,0,0),B(4,0,0),C(4,4,0),
23、设 AG=t(t0 ),则 E(0, 1,t ),F(0,1,t ),所以 =( 4,1,t), =(4,4,0), =(0,1,t)设平面 ACE 的法向量为 =(x,y,z),由 =0, =0,得 ,令 z=1,得 =(t, t,1)因为 BF 与平面 ACE 所成角的正弦值为 ,所以|cos |= = ,即 = ,解得 t2=1 或 所以 AG=1 或 AG= 【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用24【答案】【解析】解:(1)f(x)= =sin2x+ sinxcosx精选高中模拟试卷第 17 页,共 17 页= + sin2x=sin(2x )3 分周期 T=,因为 cosx0,所以x|x +k,kZ5 分当 2x ,即 +kx +k,x +k,kZ 时函数 f(x)单调递减,所以函数 f(x)的单调递减区间为, kZ7 分(2)当 ,2x ,9 分sin(2x )( ,1),当 x= 时取最大值,故当 x= 时函数 f(x)取最大值为 112 分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题