1、精选高中模拟试卷第 1 页,共 18 页七星区高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 点 A 是椭圆 上一点,F 1、F 2分别是椭圆的左、右焦点,I 是AF 1F2的内心若,则该椭圆的离心率为( )A B C D2 若复数 在复平面内对应的点关于 轴对称,且 ,则复数 在复平面内对应的点在( 12,zy12iz12z)A第一象限 B第二象限 C第三象限 D第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力3 若函数 y=|x|(1x)在区间 A 上是增函数,那么区间 A 最大为( )A(,0) B
2、C0,+) D4 数列a n满足 a1=3,a nanan+1=1,A n表示a n前 n 项之积,则 A2016的值为( )A B C 1 D15 己知 y=f(x)是定义在 R 上的奇函数,当 x0 时, f(x)=x+2,那么不等式 2f(x)10 的解集是( )A B 或C D 或6 设ABC 的三边长分别为 a、b、c ,ABC 的面积为 S,内切圆半径为 r,则 ,类比这个结论可知:四面体 SABC 的四个面的面积分别为 S1、S 2、S 3、S 4,内切球半径为 r,四面体 SABC 的体积为 V,则r=( )A BC D精选高中模拟试卷第 2 页,共 18 页7 若双曲线 C:
3、x 2 =1( b0)的顶点到渐近线的距离为 ,则双曲线的离心率 e=( )A2 B C3 D8 设 a=sin145,b=cos52 ,c=tan47,则 a,b,c 的大小关系是( )Aabc Bc ba Cba c Dacb9 如图所示,在三棱锥 的六条棱所在的直线中,异面直线共有( )111PAA2 对 B3 对 C4 对 D6 对10sin45 sin105+sin45sin15=( )A0 B C D111若多项式 x2+x10=a0+a1(x+1)+a 8(x+1 ) 8+a9(x+1 ) 9+a10(x+1) 10,则 a8=( )A45 B9 C 45 D912下列函数中,为
4、偶函数的是( )Ay=x+1 By= Cy=x 4 Dy=x 5二、填空题13一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 14已知函数 f(x)= ,则关于函数 F(x)=f(f(x)的零点个数,正确的结论是 (写出你认为正确的所有结论的序号)k=0 时,F(x)恰有一个零点 k0 时,F (x)恰有 2 个零点k0 时,F(x)恰有 3 个零点 k0 时,F (x)恰有 4 个零点15已知 f(x) x(e xae x )为偶函数,则 a_16设 x(0,),则 f(x)=cos 2x+sinx 的最大值是 精选高中模拟试卷第 3 页,共 18 页17阅读下图所示的程序框图
5、,运行相应的程序,输出的 的值等于_. n18如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 三、解答题19设数列a n的前 n 项和为 Sn,a 1=1,S n=nann(n 1)(1)求证:数列a n为等差数列,并分别求出 an的表达式;(2)设数列 的前 n 项和为 Pn,求证:P n ;(3)设 Cn= ,T n=C1+C2+Cn,试比较 Tn与 的大小20已知函数 f(x)=e xax1(a0,e 为自然对数的底数)(1)求函数 f(x)的最小值;(2)若 f(x)0 对任意的 xR 恒成立,求实数 a 的值开 始是 输 出结 束1否5,ST?
6、42T精选高中模拟试卷第 4 页,共 18 页21(本小题满分 16 分)给出定义在 ,0上的两个函数2()lnfxax, ()gax. (1)若 ()fx在 1处取最值求的值;(2)若函数2()hfxg在区间 0,1上单调递减,求实数的取值范围;(3)试确定函数 ()6mx的零点个数,并说明理由22(本题满分 14 分)已知函数 .xaxfln)(2(1)若 在 上是单调递减函数,求实数 的取值范围;)(xf5,3(2)记 ,并设 是函数 的两个极值点,若 ,bag1ln2( )(,21x)(xg27b求 的最小值.)(2123衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从
7、符合条件的志愿者中随机抽取 100 名后按年龄分组:第 1 组 20,5),第 2 组 5,30),第 3 组 0,5),第 4 组 35,0),第5 组 40,,得到的频率分布直方图如图所示.(1)若从第 3,4,5 组中用分层抽样的方法抽取 6 名志愿者参加广场的宣传活动,则应从第 3,4,5 组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第 3,4 组的志愿者中随机抽取 2 名志愿者介绍宣传经验,求第 4 组至少有一名志愿者被抽中的概率.精选高中模拟试卷第 5 页,共 18 页24在平面直角坐标系 中,过点 的直线与抛物线 相交于点 、 两点,设xOy(2,0)C24yxAB,
8、 1(,)Axy2(,)B(1)求证: 为定值;1(2)是否存在平行于 轴的定直线被以 为直径的圆截得的弦长为定值?如果存在,求出该直线方程A和弦长,如果不存在,说明理由精选高中模拟试卷第 6 页,共 18 页七星区高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:设AF 1F2的内切圆半径为 r,则SIAF1 = |AF1|r,S IAF2 = |AF2|r,S IF1F2 = |F1F2|r, , |AF1|r=2 |F1F2|r |AF2|r,整理,得|AF 1|+|AF2|=2 |F1F2|a=2 ,椭圆的离心率 e= = = 故
9、选:B2 【答案】B【解析】3 【答案】B【解析】解:y=|x|(1x)= ,再结合二次函数图象可知函数 y=|x|(1x)的单调递增区间是: 故选:B精选高中模拟试卷第 7 页,共 18 页4 【答案】D【解析】解:a 1=3,a nanan+1=1, ,得 , ,a 4=3,数列 an是以 3 为周期的周期数列,且 a1a2a3=1,2016=3672,A2016 =(1) 672=1故选:D5 【答案】B【解析】解:因为 y=f(x)为奇函数,所以当 x0 时,x0,根据题意得:f(x)= f(x)= x+2,即 f(x)=x2,当 x0 时,f(x)=x+2 ,代入所求不等式得:2(x
10、+2)10,即 2x3,解得 x ,则原不等式的解集为 x ;当 x0 时,f(x)=x2,代入所求的不等式得:2(x2) 10,即 2x5,解得 x ,则原不等式的解集为 0x ,综上,所求不等式的解集为x|x 或 0x 故选 B精选高中模拟试卷第 8 页,共 18 页6 【答案】 C【解析】解:设四面体的内切球的球心为 O,则球心 O 到四个面的距离都是 R,所以四面体的体积等于以 O 为顶点,分别以四个面为底面的 4 个三棱锥体积的和则四面体的体积为 R=故选 C【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去一般步骤:找出两类事物之间
11、的相似性或者一致性用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)7 【答案】B【解析】解:双曲线 C:x 2 =1(b0)的顶点为( 1,0),渐近线方程为 y=bx,由题意可得 = ,解得 b=1,c= = ,即有离心率 e= = 故选:B【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题精选高中模拟试卷第 9 页,共 18 页8 【答案】A【解析】解:a=sin145=sin35 ,b=cos52=sin38 ,c=tan47tan45 =1,y=sinx 在(0,90)单调递增,sin35 sin38sin90=1 ,abc故
12、选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题9 【答案】B【解析】试题分析:三棱锥 中,则 与 、 与 、 与 都是异面直线,所以共有三对,故PABCPBCAPBC选 B考点:异面直线的判定10【答案】C【解析】解:sin45sin105 +sin45sin15=cos45cos15+sin45sin15=cos(45 15)=cos30= 故选:C【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题11【答案】A【解析】解:a 8 是 x10=1+( x+1) 10的展开式中
13、第九项(x+1) 8 的系数,a 8= =45,故选:A【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题12【答案】C【解析】解:对于 A,既不是奇函数,也不是偶函数,精选高中模拟试卷第 10 页,共 18 页对于 B,满足 f(x)= f(x),是奇函数,对于 C,定义域为 R,满足 f(x)=f( x),则是偶函数,对于 D,满足 f(x)= f(x),是奇函数,故选:C【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题二、填空题13【答案】 2:1 【解析】解:设圆锥、圆柱的母线为 l,底面半径为 r,
14、所以圆锥的侧面积为: =rl圆柱的侧面积为:2rl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:114【答案】 【解析】解:当 k=0 时, ,当 x0 时,f(x )=1,则 f(f (x)=f(1)= =0,此时有无穷多个零点,故错误;当 k0 时,()当 x0 时,f(x)=kx+11,此时 f(f (x)=f(kx+1)= ,令 f(f(x)=0,可得:x=0;()当 0x1 时, ,此时f(f(x)=f( )= ,令 f(f (x)=0,可得:x= ,满足;()当 x1 时, ,此时 f(f (x)=f( )=k +10,此时无零点综上可得,当 k0 时,函数有两零点,故正确;当
15、 k0 时,()当 x 时,kx+10,此时 f(f(x)=f(kx+1)=k(kx+1)+1,精选高中模拟试卷第 11 页,共 18 页令 f(f(x)=0,可得: ,满足;()当 时,kx+10,此时 f(f(x)=f(kx+1)= ,令 f(f(x)=0,可得:x=0,满足;()当 0x1 时, ,此时 f(f(x)=f( )= ,令 f(f(x)=0,可得:x= ,满足;()当 x1 时, ,此时 f(f (x)=f( )=k +1,令 f(f(x)=0 得:x=1,满足;综上可得:当 k0 时,函数有 4 个零点故错误,正确故答案为:【点评】本题考查复合函数的零点问题考查了分类讨论和
16、转化的思想方法,要求比较高,属于难题15【答案】【解析】解析:f(x )是偶函数,f(x )f(x)恒成立,即(x)(e x ae x)x (e xae x ),a( exe x )(e xe x ),a1.答案:116【答案】 【解析】解:f(x)=cos 2x+sinx=1sin2x+sinx= + ,故当 sinx= 时,函数 f(x)取得最大值为 ,故答案为: 【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题17【答案】 6【解析】解析:本题考查程序框图中的循环结构第 1 次运行后, ;第 2 次运行后,9,2,STnST;第 3 次运行后, ;第 4 次运行后,13,4
17、,STnST7,8,STn精选高中模拟试卷第 12 页,共 18 页;第 5 次运行后, ,此时跳出循环,输出结果21,6,STnST25,3,6STnST程序结束n18【答案】 64 【解析】解:由图可知甲的得分共有 9 个,中位数为 28甲的中位数为 28乙的得分共有 9 个,中位数为 36乙的中位数为 36则甲乙两人比赛得分的中位数之和是 64故答案为:64【点评】求中位数的关键是根据定义仔细分析另外茎叶图的茎是高位,叶是低位,这一点一定要注意三、解答题19【答案】 【解析】解:(1)证明:S n=nann(n 1)Sn+1=(n+1) an+1(n+1 )nan+1=Sn+1Sn=(n
18、+1)a n+1nan2nnan+1nan2n=0an+1an=2,an是以首项为 a1=1,公差为 2 的等差数列 由等差数列的通项公式可知:a n=1+(n 1) 2=2n1,数列a n通项公式 an=2n1;(2)证明:由(1)可得 ,= (3) ,= ,两式相减得 精选高中模拟试卷第 13 页,共 18 页= ,= ,= ,= , n N*,2n1, , 20【答案】 【解析】解:(1)f(x)=e xax1(a0),f(x)=e xa,由 f(x)=e xa=0 得 x=lna,由 f(x)0 得,xlna,此时函数单调递增,由 f(x)0 得,xlna,此时函数单调递减,即 f(x
19、)在 x=lna 处取得极小值且为最小值,最小值为 f(lna )=e lnaalna1=aalna1(2)若 f(x)0 对任意的 xR 恒成立,等价为 f(x) min0,由(1)知,f(x) min=aalna1,设 g(a)=aalna1,精选高中模拟试卷第 14 页,共 18 页则 g(a )=1lna1= lna,由 g(a )=0 得 a=1,由 g(x)0 得,0x1,此时函数单调递增,由 g(x)0 得,x1,此时函数单调递减,g( a)在 a=1 处取得最大值,即 g(1)=0,因此 g(a) 0 的解为 a=1,a=121【答案】(1) 2a (2) a (3)两个零点【
20、解析】试题分析:(1) 开区间的最值在极值点取得,因此 ()fx在 1处取极值,即 (1)0f ,解得 2a ,需验证(2) ()hx在区间 0,1上单调递减,转化为 0h 在区间 ,上恒成立,再利用变量分离转化为对应函数最值:24a的最大值,根据分式函数求最值方法求得24xF最大值 2(3)先利用导数研究函数 m单调性:当 ,时,递减,当 ,1x时,递增;再考虑区间端点函数值的符号: 10m, 4)0e(, 4()0e,结合零点存在定理可得零点个数试题解析:(1) 2afx由已知, ()0f 即: 20a,解得: 2a 经检验 满足题意所以 4 分精选高中模拟试卷第 15 页,共 18 页因
21、为 0,1x,所以1,x,所以2min1x所以 ma2F,所以 a 10 分(3)函数 ()6fg有两个零点因为 2ln26xx所以 2112xx12 分当 1,0时, 0,当 ,时, 0xm所以 min4, 14 分324-e)(+2)(=(),84241(1)e(4170(故由零点存在定理可知:函数 x在 (,)存在一个零点,函数 x在4(,)存在一个零点,所以函数 (6mfgx有两个零点 16 分考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点
22、、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等22【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2) ,xbxbxaxxg )1(2ln)1(2ln)(l)( 22 精选高中模拟试卷第 16 页,共 18 页23【答案】(1) ;(2) .3,170【解析】111试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有 种
23、情况,10其中第组的名志愿者 12,B至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1 精选高中模拟试卷第 17 页,共 18 页(2)记第 3 组的 3 名志愿者为 123,A,第 4 组的 2 名志愿者为 12,B,则从 5 名志愿者中抽取 2 名志愿者有 12(,)A,3, 1,B, (,), (,), 21(,), 2(,)A, 3(,), 32(,)A, 12(,)B,共 10 种,其中第 4 组的 2 名志愿者 12至少有一名志愿者被抽中的有 1, 1, , ,A,31(,), 3(,), ,,共 7 种,所以第 4 组至少有一名志愿都被抽中的概率为 70.考点
24、:1、分层抽样的应用;2、古典概型概率公式.24【答案】(1)证明见解析;(2)弦长为定值,直线方程为 .x【解析】(2)根据两点间距离公式、点到直线距离公式及勾股定理可求得弦长为 ,进而得214()84ax时为定值.1a试题解析:(1)设直线 的方程为 ,由AB2myx2,yx得 , ,2480ym128y因此有 为定值1111(2)设存在直线: 满足条件,则 的中点 , ,xaC1(,)2xyE211()ACxy因此以 为直径圆的半径 , 点到直线 的距离AC11)2rA214Ea,1|2xd所以所截弦长为 22211(4)()xrda2114()xa14()84ax精选高中模拟试卷第 18 页,共 18 页当 ,即 时,弦长为定值 2,这时直线方程为 10a11x考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.