1、精选高中模拟试卷第 1 页,共 18 页万山区高级中学 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知抛物线 : 的焦点为 ,定点 ,若射线 与抛物线 交于点 ,与抛C24yxF(0,2)AFACM物线 的准线交于点 ,则 的值是( )N|:|MA B C D(5):51:255:(1)2 在正方体 中, 是线段 的中点,若四面体 的外接球体积为 ,1BDA-1 B-36p则正方体棱长为( )A2 B3 C4 D5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力3 函数 y=2|x|的定义域为a,b,
2、值域为1 ,16,当 a 变动时,函数 b=g(a)的图象可以是( )A B C D4 函数 f(x)=x 33x2+5 的单调减区间是( )A(0,2) B(0,3 ) C(0,1) D(0,5)5 某工厂生产某种产品的产量 x(吨)与相应的生产能耗 y(吨标准煤)有如表几组样本数据:x 3 4 5 6y 2.5 3 4 4.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为 0.7,则这组样本数据的回归直线方程是( )A =0.7x+0.35 B =0.7x+1 C =0.7x+2.05 D =0.7x+0.45精选高中模拟试卷第 2 页,共 18 页6
3、 若函数 f(x)= 2x3+ax2+1 存在唯一的零点,则实数 a 的取值范围为( )A0,+ ) B0,3 C( 3,0 D(3,+)7 已知函数 f(x)=m(x ) 2lnx(m R),g(x)= ,若至少存在一个 x01,e,使得 f(x 0)g(x 0)成立,则实数 m 的范围是( )A(, B( , ) C( ,0 D(,0)8 已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量 X(单位:mm)对工期延误天数 Y 的影响及相应的概率 P 如表所示:降水量 X X 100 100X200 200X300 X300工期延误天数 Y 0 5 15 30概率 P 0.4 0
4、.2 0.1 0.3在降水量 X 至少是 100 的条件下,工期延误不超过 15 天的概率为( )A0.1 B0.3 C0.42 D0.59 已知条件 p:x 2+x20,条件 q:xa,若 q 是 p 的充分不必要条件,则 a 的取值范围可以是( )Aa1 Ba 1 Ca 1 Da 310若双曲线 C:x 2 =1( b0)的顶点到渐近线的距离为 ,则双曲线的离心率 e=( )A2 B C3 D11已知集合 ,则A0 或B0 或 3 C1 或 D1 或 312设函数 ,则使得 的自变量的取值范围为( )21,4xf1fxA B,20,20,1C D1二、填空题精选高中模拟试卷第 3 页,共
5、18 页13已知圆 O:x 2+y2=1 和双曲线 C: =1(a0,b0)若对双曲线 C 上任意一点 A(点 A 在圆 O外),均存在与圆 O 外切且顶点都在双曲线 C 上的菱形 ABCD,则 = 14若函数 为奇函数,则 _63e()()2xxbfaRab【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力15已知一组数据 , , , , 的方差是 2,另一组数据 , , , , ( )1345 1x2a3x45ax0的标准差是 ,则 216若双曲线的方程为 4x29y2=36,则其实轴长为 17已知函数 f(x)=cosxsinx,给出下列四个结论:若 f(x 1)= f(x 2
6、),则 x1=x2;f(x)的最小正周期是 2;f(x)在区间 , 上是增函数;f(x)的图象关于直线 x= 对称其中正确的结论是 18【启东中学 2018 届高三上学期第一次月考(10 月)】在平面直角坐标系 xOy 中,P 是曲线 上xCye: 一点,直线 经过点 P,且与曲线 C 在 P 点处的切线垂直,则实数 c 的值为_20lxyc: 三、解答题19如图所示,一动圆与圆 x2+y2+6x+5=0 外切,同时与圆 x2+y26x91=0 内切,求动圆圆心 M 的轨迹方程,并说明它是什么样的曲线精选高中模拟试卷第 4 页,共 18 页20由四个不同的数字 1,2,4,x 组成无重复数字的
7、三位数(1)若 x=5,其中能被 5 整除的共有多少个?(2)若 x=9,其中能被 3 整除的共有多少个?(3)若 x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是 252,求 x21【徐州市 2018 届高三上学期期中】已知函数 ( , 是自然对数的底数).(1)若函数 在区间 上是单调减函数,求实数 的取值范围;(2)求函数 的极值;(3)设函数 图象上任意一点处的切线为 ,求 在 轴上的截距的取值范围精选高中模拟试卷第 5 页,共 18 页22 已知不等式 的解集为 或(1)求 , 的值(2)解不等式 .23(本小题满分 12 分)已知 且过点 的直线与线段 有公共点
8、, 求直2,10,AB1,PAB线的斜率的取值范围.24已知关 x 的一元二次函数 f(x)=ax 2bx+1,设集合 P=1,2,3Q= 1,1,2,3,4,分别从集合 P 和Q 中随机取一个数 a 和 b 得到数对(a,b)(1)列举出所有的数对(a,b)并求函数 y=f(x)有零点的概率;(2)求函数 y=f(x)在区间1,+ )上是增函数的概率精选高中模拟试卷第 6 页,共 18 页精选高中模拟试卷第 7 页,共 18 页万山区高级中学 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方
9、法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将 到焦点的距离转化为到准线的距离后进行解答的.M2 【答案】C3 【答案】B精选高中模拟试卷第 8 页,共 18 页【解析】解:根据选项可知 a0a 变动时,函数 y=2|x|的定义域为 a,b,值域为1,16 ,2 |b|=16,b=4故选 B【点评】本题主要考查了指数函数的定义域和值域,同时
10、考查了函数图象,属于基础题4 【答案】A【解析】解:f(x)=x 33x2+5,f(x)=3x 26x,令 f(x)0,解得: 0x2,故选:A【点评】本题考察了函数的单调性,导数的应用,是一道基础题5 【答案】A【解析】解:设回归直线方程 =0.7x+a,由样本数据可得, =4.5, =3.5因为回归直线经过点( , ),所以 3.5=0.74.5+a,解得 a=0.35故选 A【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键6 【答案】 D【解析】解:令 f(x)= 2x3+ax2+1=0,易知当 x=0 时上式不成立;精选高中模拟试卷第 9 页,共 18 页故 a
11、= =2x ,令 g(x)=2x ,则 g(x)=2+ =2 ,故 g(x)在(, 1)上是增函数,在(1, 0)上是减函数,在(0,+)上是增函数;故作 g(x)=2x 的图象如下,g(1) =21=3,故结合图象可知,a3 时,方程 a=2x 有且只有一个解,即函数 f(x)= 2x3+ax2+1 存在唯一的零点,故选:D7 【答案】 B【解析】解:由题意,不等式 f(x)g(x)在1 ,e上有解,精选高中模拟试卷第 10 页,共 18 页mx2lnx,即 在1,e 上有解,令 h(x)= ,则 h(x)= ,1xe,h(x)0,h(x) max=h(e)= , h(e)= ,m m 的取
12、值范围是(, )故选:B【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用8 【答案】D【解析】解:降水量 X 至少是 100 的条件下,工期延误不超过 15 天的概率 P,设:降水量 X 至少是 100 为事件 A,工期延误不超过 15 天的事件 B,P(A)=0.6,P(AB )=0.3 ,P=P(B 丨 A)= =0.5,故答案选:D9 【答案】A【解析】解:条件 p:x 2+x20,条件 q:x2 或 x1q 是 p 的充分不必要条件a1 故选 A10【答案】B精选高中模拟试卷第 11 页,共 18 页【解析】解:双曲线 C:x
13、 2 =1(b0)的顶点为( 1,0),渐近线方程为 y=bx,由题意可得 = ,解得 b=1,c= = ,即有离心率 e= = 故选:B【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题11【答案】 B【解析】 ,故 或 ,解得 或 或 ,又根据集合元素的互异性 ,所以或 。12【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解
14、每个不等式的解集,利用集合的运算是解答的关键.二、填空题13【答案】 1 【解析】解:若对双曲线 C 上任意一点 A(点 A 在圆 O 外),均存在与圆 O 外切且顶点都在双曲线 C 上的菱形 ABCD,可通过特殊点,取 A(1,t),精选高中模拟试卷第 12 页,共 18 页则 B(1,t),C(1,t ),D(1,t ),由直线和圆相切的条件可得,t=1将 A(1,1)代入双曲线方程,可得 =1故答案为:1【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题14【答案】2016【解析】因为函数 为奇函数且 ,则由 ,得 ,整理,得 ()fxxR(0)f063e2ba2
15、016ab15【答案】2【解析】试题分析:第一组数据平均数为 ,)()()()()(, 252423221 xxxx221 345()() 8,axxaaaa考点:方差;标准差16【答案】 6 【解析】解:双曲线的方程为 4x29y2=36,即为: =1,可得 a=3,则双曲线的实轴长为 2a=6故答案为:6【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题17【答案】 【解析】解:函数 f(x)=cosxsinx= sin2x,对于,当 f(x 1)= f(x 2)时,sin2x 1=sin2x2=sin(2x 2)2x1=2x2+2k,即 x1+x2=k
16、,kZ,故错误;对于,由函数 f(x)= sin2x 知最小正周期 T=,故错误;精选高中模拟试卷第 13 页,共 18 页对于,令 +22x +2k,kZ 得 +kx +k,kZ当 k=0 时,x , ,f(x)是增函数,故 正确;对于,将 x= 代入函数 f(x)得,f( )= 为最小值,故 f(x)的图象关于直线 x= 对称, 正确综上,正确的命题是故答案为:18【答案】4ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。三、解答题19【答案】 【解析】解:(方法一)设动
17、圆圆心为 M(x,y),半径为 R,设已知圆的圆心分别为 O1、O 2,将圆的方程分别配方得:(x+3) 2+y2=4,(x 3) 2+y2=100,当动圆与圆 O1相外切时,有 |O1M|=R+2当动圆与圆 O2相内切时,有 |O2M|=10R将两式相加,得|O 1M|+|O2M|=12|O 1O2|,动圆圆心 M(x,y)到点 O1( 3,0)和 O2(3,0)的距离和是常数 12,所以点 M 的轨迹是焦点为点 O1( 3,0)、O 2(3,0),长轴长等于 12 的椭圆精选高中模拟试卷第 14 页,共 18 页2c=6,2a=12,c=3,a=6b 2=369=27圆心轨迹方程为 ,轨迹
18、为椭圆(方法二):由方法一可得方程 ,移项再两边分别平方得:2两边再平方得:3x 2+4y2108=0,整理得所以圆心轨迹方程为 ,轨迹为椭圆【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键20【答案】 【解析】【专题】计算题;排列组合【分析】(1)若 x=5,根据题意,要求的三位数能被 5 整除,则 5 必须在末尾,在 1、2、4 三个数字中任选2 个,放在前 2 位,由排列数公式计算可得答案;(2)若 x=9,根据题意,要求的三位数能被 3 整除,则这三个数字为 1、2、9 或 2、4、9,分“取出的三个数字为 1、2、9”与“ 取出的三个数字为 2、
19、4、9” 两种情况讨论,由分类计数原理计算可得答案;(3)若 x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为 0 或 2 或 4,分“末位是 0”与“末位是 2 或 4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得 x=0 时不能满足题意,进而讨论 x0 时,先求出 4 个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了 18 次,则有 252=18(1+2+4+x ),解可得 x 的值【解答】解:(1)若 x=5,则四个数字为 1,2,4,5;又由要求的三位数能被 5 整除,则 5 必须在末尾,在 1、2、4 三个数字中任选 2 个,放在前 2 位,有
20、A32=6 种情况,即能被 5 整除的三位数共有 6 个;(2)若 x=9,则四个数字为 1,2,4,9;又由要求的三位数能被 3 整除,则这三个数字为 1、2、9 或 2、4、9,取出的三个数字为 1、2、9 时,有 A33=6 种情况,取出的三个数字为 2、4、9 时,有 A33=6 种情况,精选高中模拟试卷第 15 页,共 18 页则此时一共有 6+6=12 个能被 3 整除的三位数;(3)若 x=0,则四个数字为 1,2,4,0;又由要求的三位数是偶数,则这个三位数的末位数字为 0 或 2 或 4,当末位是 0 时,在 1、2、4 三个数字中任选 2 个,放在前 2 位,有 A32=6
21、 种情况,当末位是 2 或 4 时,有 A21A21A21=8 种情况,此时三位偶数一共有 6+8=14 个,(4)若 x=0,可以组成 C31C31C21=332=18 个三位数,即 1、2、4、0 四个数字最多出现 18 次,则所有这些三位数的各位数字之和最大为(1+2+4)18=126 ,不合题意,故 x=0 不成立;当 x0 时,可以组成无重复三位数共有 C41C31C21=432=24 种,共用了 243=72 个数字,则每个数字用了 =18 次,则有 252=18(1+2+4+x),解可得 x=7【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分
22、 x 为 0 与否两种情况讨论21【答案】(1) (2)见解析(3)【解析】试题分析:(1)由题意转化为 在区间 上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数 的取值范围;(2)导函数有一个零点,再根据 a 的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在 x 轴上的截距,最后根据 a 的正负以及基本不等式求截距的取值范围试题解析:(1)函数 的导函数 ,则 在区间 上恒成立,且等号不恒成立,又 ,所以 在区间 上恒成立, 记 ,只需 , 即 ,解得 (2)由 ,得 ,当 时,有 ; ,所以函数 在 单调递增,
23、 单调递减,所以函数 在 取得极大值 ,没有极小值精选高中模拟试卷第 16 页,共 18 页当 时,有 ; , 所以函数 在 单调递减, 单调递增,所以函数 在 取得极小值 ,没有极大值综上可知: 当 时,函数 在 取得极大值 ,没有极小值;当 时,函数 在 取得极小值 ,没有极大值(3)设切点为 ,则曲线在点 处的切线 方程为 ,当 时,切线 的方程为 ,其在 轴上的截距不存在当 时,令 ,得切线 在 轴上的截距为, 当 时,当且仅当 ,即 或 时取等号; 当 时,当且仅当 ,即 或 时取等号.所以切线 在 轴上的截距范围是 .精选高中模拟试卷第 17 页,共 18 页点睛:函数极值问题的常
24、见类型及解题策略(1)知图判断函数极值的情况.先找导数为 0 的点,再判断导数为 0 的点的左、右两侧的导数符号.(2)已知函数求极值.求 求方程 的根列表检验 在 的根的附近两侧的符号下结论.(3)已知极值求参数.若函数 在点 处取得极值,则 ,且在该点左、右两侧的导数值符号相反.22【答案】 【解析】解:(1)因为不等式 的解集为 或所以 , 是方程 的两个解所以 ,解得(2)由(1)知原不等式为 ,即 ,当 时,不等式解集为当 时,不等式解集为 ;当 时,不等式解集为 ;23【答案】 或 .3k2【解析】试题分析:根据两点的斜率公式,求得 , ,结合图形,即可求解直线的斜率的取值范围.2
25、PAk3PB试题解析:由已知, ,12PAk10所以,由图可知,过点 的直线与线段 有公共点, ,所以直线的斜率的取值范围是: 或 .3k精选高中模拟试卷第 18 页,共 18 页考点:直线的斜率公式.24【答案】 【解析】解:(1)(a,b)共有(1, 1),(1,1),(1,2),(1,3),(1,4),(2, 1),(2,1),(2,2),(2,3),(2,4),(31),(3,1),(3,2),(3,3),(3,4),15 种情况函数 y=f(x)有零点,=b 24a0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6 种情况满足条件所以函数 y=f(x)有零点的概率为(2)函数 y=f(x)的对称轴为 ,在区间1 ,+)上是增函数则有 ,(1,1),(1,1),(1,2),(2,1),(2, 1),(2,2),(2,3),(2,4),(3, 1),(3,1),(3,2),(3,3),(3,4),共 13 种情况满足条件所以函数 y=f(x)在区间1, +)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视