1、精选高中模拟试卷第 1 页,共 19 页大余县第三中学校 2018-2019 学年上学期高二数学 12 月月考试题含解析班级_ 姓名_ 分数_一、选择题1 某几何体的三视图如图所示,且该几何体的体积是 ,则正视图中的 x 的值是( )A2 B C D32 设 i 是虚数单位, 是复数 z 的共轭复数,若 z =2( +i),则 z=( )A1 i B1+i C 1+i D1i3 在高校自主招生中,某学校获得 5 个推荐名额,其中清华大学 2 名,北京大学 2 名,复旦大学 1 名并且北京大学和清华大学都要求必须有男生参加学校通过选拔定下 3 男 2 女共 5 个推荐对象,则不同的推荐方法共有(
2、 )A20 种 B22 种 C24 种 D36 种4 若当 时,函数 ( 且 )始终满足 ,则函数 的图象大致Rx|)(xaf01a1)(xf 3|logxya是( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等精选高中模拟试卷第 2 页,共 19 页5 有 30 袋长富牛奶,编号为 1 至 30,若从中抽取 6 袋进行检验,则用系统抽样确定所抽的编号为( )A3,6,9,12,15,18 B4,8,12,16,20,24C2,7,12,17,22,27 D6,10,14,18,22,266 函数 是指数函数,则的值是( )2()xyaA4
3、B1 或 3 C 3 D17 函数 f(x)=3 x+x3 的零点所在的区间是( )A(0,1) B(1,2) C(2.3) D(3,4)8 全称命题:xR,x 20 的否定是( )AxR ,x 20 Bx R,x 20 Cx R,x 20 Dx R,x 209 设 a=lge,b=(lge) 2,c=lg ,则( )Aabc Bc ab Ca cb Dcba10如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置 C对隧道底 AB 的张角 最大时采集效果最好,则采集效果最好时位置 C 到 AB 的距离是( )A2 m B2 m C4 m D6 m11过点(
4、2,2)且与双曲线 y2=1 有公共渐近线的双曲线方程是( )A =1 B =1 C =1 D =112已知全集 U=R,集合 M=x|2x12和 N=x|x=2k1,k=1,2, 的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3 个 B2 个 C1 个 D无穷多个二、填空题13当 时,函数 的图象不在函数 的下方,则实数 的取值范围是0,x( ) e1xf2()gxaa_精选高中模拟试卷第 3 页,共 19 页【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力14已知 , 为实数,代数式 的最小值是 .
5、xy 222)3(9)(1yxy【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.15某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量 (单位:毫克/升)与时间 (单Pt位:小时)间的关系为 ( , 均为正常数)如果前 5 个小时消除了 的污染物,为了0ektP0 10%消除 的污染物,则需要_小时.27.1%【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.16曲线 C 是平面内到直线 l1:x=1 和直线 l2:y=1 的距离之积等于常数 k2(k0)的点的轨迹给出下列四个结论:曲线 C 过点( 1,1);曲线 C 关
6、于点( 1,1)对称;若点 P 在曲线 C 上,点 A,B 分别在直线 l1,l 2上,则|PA|+|PB|不小于 2k;设 p1为曲线 C 上任意一点,则点 P1关于直线 x=1、点(1,1)及直线 y=1 对称的点分别为 P1、P 2、P 3,则四边形 P0P1P2P3的面积为定值 4k2其中,所有正确结论的序号是 17函数 2logfx在点 1,A处切线的斜率为 18把函数 y=sin2x 的图象向左平移 个单位长度,再把所得图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得函数图象的解析式为 三、解答题19如图,在四棱锥 PABCD 中,ADBC,ABAD,ABPA,BC=2
7、AB=2AD=4BE ,平面 PAB平面ABCD,()求证:平面 PED平面 PAC;()若直线 PE 与平面 PAC 所成的角的正弦值为 ,求二面角 APC D 的平面角的余弦值精选高中模拟试卷第 4 页,共 19 页20(1)求 z=2x+y 的最大值,使式中的 x、y 满足约束条件(2)求 z=2x+y 的最大值,使式中的 x、y 满足约束条件 + =121(本小题满分 10 分)选修 4-5:不等式选讲已知函数 .()()fxaR(1)当 时,解不等式 ;21fx(2)当 时, ,求的取值范围.(2,1) ()afx22求曲线 y=x3的过(1,1)的切线方程精选高中模拟试卷第 5 页
8、,共 19 页23已知函数 , 32()1fxax0a(1)当 时,求函数 的单调区间;2a()f(2)若关于的不等式 在 上有解,求实数的取值范围0,)24【徐州市 2018 届高三上学期期中】已知函数 ( , 是自然对数的底数).(1)若函数 在区间 上是单调减函数,求实数 的取值范围;(2)求函数 的极值;(3)设函数 图象上任意一点处的切线为 ,求 在 轴上的截距的取值范围精选高中模拟试卷第 6 页,共 19 页大余县第三中学校 2018-2019 学年上学期高二数学 12 月月考试题含解析(参考答案)一、选择题1 【答案】C 解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上
9、、下、高分别为 1、2、2 的直角梯形,一条长为 x 的侧棱垂直于底面则体积为 = ,解得 x= 故选:C2 【答案】B【解析】解:设 z=a+bi(a,b R),则 =abi,由 z =2( +i),得(a+bi)(abi)=2a+(b1)i,整理得 a2+b2=2a+2(b 1)i则 ,解得 所以 z=1+i故选 B【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题3 【答案】C【解析】解:根据题意,分 2 种情况讨论:、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有 =12 种推荐方法;、
10、将三个男生分成两组分别推荐北京大学和清华大学,其余 2 个女生从剩下的 2 个大学中选,共有 =12 种推荐方法;故共有 12+12=24 种推荐方法;故选:C4 【答案】【解析】由 始终满足 可知 由函数 是奇函数,排除 ;当|)(xaf1)(xfa3|logxyaB时, ,此时 ,排除 ;当 时, ,排除 ,因此1,0(x0|log0|log3yA0yD精选高中模拟试卷第 7 页,共 19 页选 C5 【答案】C【解析】解:从 30 件产品中随机抽取 6 件进行检验,采用系统抽样的间隔为 306=5,只有选项 C 中编号间隔为 5,故选:C6 【答案】C【解析】考点:指数函数的概念7 【答
11、案】A【解析】解:f(0)=20,f (1)=10,由零点存在性定理可知函数 f(x)=3 x+x3 的零点所在的区间是( 0,1)故选 A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题8 【答案】D【解析】解:命题:xR,x 20 的否定是:xR,x 20故选 D【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“” 的否定用“” 了这里就有注意量词的否定形式如“都是”的否定是“ 不都是”,而不是“都不是”特称命题的否定是全称命题,“ 存在”对应“任意 ”9 【答案】C【解析】解:1e3 ,0lge1,lge lge(
12、lge) 2acb精选高中模拟试卷第 8 页,共 19 页故选:C【点评】本题主要考查对数的单调性即底数大于 1 时单调递增,底数大于 0 小于 1 时单调递减10【答案】A【解析】解:建立如图所示的坐标系,设抛物线方程为 x2=2py(p0),将点(4,4)代入,可得 p=2,所以抛物线方程为 x2=4y,设 C(x,y)(y 6),则由 A(4, 6),B(4,6),可得 kCA= ,k CB= ,tanBCA= = = ,令 t=y+6(t0),则 tanBCA= = t=2 时,位置 C 对隧道底 AB 的张角最大,故选:A【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线
13、的方程及 tanBCA,正确运用基本不等式是关键11【答案】A【解析】解:设所求双曲线方程为 y2=,把(2,2)代入方程 y2=,精选高中模拟试卷第 9 页,共 19 页解得 =2由此可求得所求双曲线的方程为 故选 A【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用12【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为 MN,又由 M=x|2x12得1x3,即 M=x|1x3,在此范围内的奇数有 1 和 3所以集合 MN=1,3共有 2 个元素,故选 B二、填空题13【答案】 2e,)【解析】由题意,知当 时,不等式 ,即 恒成立令0,1x( ) 2e1xax21ex
14、, 令 , ,21hx2hxkxk0,1 在 为递减, , ,e0,xkk0,1x0x21e xh在 为递增, ,则 1eh2ea14【答案】 . 4【解析】精选高中模拟试卷第 10 页,共 19 页15【答案】15【解析】由条件知 ,所以 .消除了 的污染物后,废气中的污染物数量为50.9ekP509k27.1%,于是 , ,所以 小时.0.72972t 357et kt16【答案】 【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1|y1|=k 2,对于,将(1,1)代入验证,此方程不过此点,所以错;对于,把方程中的 x 被2x 代换,y 被 2y 代
15、换,方程不变,故此曲线关于(1,1)对称正确;对于,由题意知点 P 在曲线 C 上,点 A,B 分别在直线 l1,l 2上,则|PA| |x+1|,|PB|y 1|PA|+|PB|2 =2k, 正确;对于,由题意知点 P 在曲线 C 上,根据对称性,则四边形 P0P1P2P3的面积=2|x+1|2|y 1|=4|x+1|y1|=4k2所以 正确故答案为:【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题17【答案】1ln2精选高中模拟试卷第 11 页,共 19 页【解析】试题分析:11ln2ln2fxkf考点:导数几何意义【思路点睛】(1)求曲线的
16、切线要注意“过点 P 的切线”与“在点 P 处的切线”的差异,过点 P 的切线中,点 P 不一定是切点,点 P 也不一定在已知曲线上,而在点 P 处的切线,必以点 P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.18【答案】 y=cosx 【解析】解:把函数 y=sin2x 的图象向左平移 个单位长度,得 ,即 y=cos2x 的图象,把y=cos2x 的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),得到 y=cosx 的图象;
17、故答案为:y=cosx三、解答题19【答案】 【解析】解:()平面 PAB平面 ABCD,平面 PAB平面 ABCD=AB,ABPAPA平面 ABCD结合 ABAD,可得分别以 AB、AD、AP 为 x 轴、 y 轴、z 轴,建立空间直角坐标系 oxyz ,如图所示可得 A(0,0,0)D(0,2,0),E(2,1,0),C (2,4,0),P(0,0,) (0) , ,得 , ,DEAC 且 DEAP,AC、AP 是平面 PAC 内的相交直线, ED平面 PACED平面 PED平面 PED平面 PAC()由()得平面 PAC 的一个法向量是 ,设直线 PE 与平面 PAC 所成的角为 ,精选
18、高中模拟试卷第 12 页,共 19 页则 ,解之得 =20,=2,可得 P 的坐标为(0,0,2)设平面 PCD 的一个法向量为 =(x 0,y 0,z 0), ,由 , ,得到 ,令 x0=1,可得 y0=z0=1,得 =(1,1,1)cos ,由图形可得二面角 APCD 的平面角是锐角,二面角 APCD 的平面角的余弦值为 【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角 APCD 的余弦值着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题20【答案】【解析】解:(1)由题意作出可行域如下,精选高中模拟试卷第 13
19、 页,共 19 页,结合图象可知,当过点 A(2 ,1)时有最大值,故 Zmax=221=3;(2)由题意作图象如下,精选高中模拟试卷第 14 页,共 19 页,根据距离公式,原点 O 到直线 2x+yz=0 的距离 d= ,精选高中模拟试卷第 15 页,共 19 页故当 d 有最大值时,|z|有最大值,即 z 有最值;结合图象可知,当直线 2x+yz=0 与椭圆 + =1 相切时最大,联立方程 化简可得,116x2100zx+25z 2400=0,故=10000z 24116(25z 2400)=0,故 z2=116,故 z=2x+y 的最大值为 【点评】本题考查了线性规划的应用及圆锥曲线与
20、直线的位置关系的应用21【答案】(1) ;(2) .1x或 (,2【解析】试题解析:(1)因为 ,所以 ,()21fx12x即 ,21x当 时, , , ,从而 ;1x当 时, , , ,从而不等式无解;1x3x当 时, , ,从而 ;12x综上,不等式的解集为 .x或(2)由 ,得 ,1()af121xax因为 ,12x所以当 时, ;()0当 时,a11xax记不等式 的解集为 ,则 ,故 ,1xA(2,)2a所以的取值范围是 .(,2精选高中模拟试卷第 16 页,共 19 页考点:1.含绝对值的不等式;2.分类讨论.22【答案】 【解析】解:y=x 3的导数 y=3x2,若(1,1)为切
21、点,k=3 12=3,切线 l:y1=3(x1)即 3xy2=0;若(1,1)不是切点,设切点 P(m,m 3),k=3m 2= ,即 2m2m1=0,则 m=1(舍)或 切线 l:y1= (x1)即 3x4y+1=0故切线方程为:3xy 2=0 或 3x4y+1=0【点评】本题主要考查导数的几何意义、利用导数研究曲线上某点处的切线方程等基础知识,注意在某点处和过某点的切线,考查运算求解能力属于中档题和易错题23【答案】() 的单调递增区间是 和 ,单调递减区间为 ;()()fx,2,32(,)31,)【解析】试题分析:() 时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区
22、间;2a() 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围试题解析:(1)当 时, ,32()41fxx所以 ,2()34fx由 ,得 或 ,0所以函数 的单调递减区间为 ()f 2(,)3(2)要使 在 上有解,只要 在区间 上的最小值小于等于 0x1,)(fx1,)因为 ,223faxa令 ,得 , 1 ()0100精选高中模拟试卷第 17 页,共 19 页考点:导数与函数的单调性;分类讨论思想 24【答案】(1) (2)见解析(3)【解析】试题分析:(1)由题意转化为 在区间 上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,
23、解不等式得实数 的取值范围;(2)导函数有一个零点,再根据 a 的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在 x 轴上的截距,最后根据 a 的正负以及基本不等式求截距的取值范围试题解析:(1)函数 的导函数 ,则 在区间 上恒成立,且等号不恒成立,又 ,所以 在区间 上恒成立, 记 ,只需 , 即 ,解得 (2)由 ,得 ,精选高中模拟试卷第 18 页,共 19 页当 时,有 ; ,所以函数 在 单调递增, 单调递减,所以函数 在 取得极大值 ,没有极小值当 时,有 ; , 所以函数 在 单调递减, 单调递增,所以函数 在 取得极小值
24、,没有极大值综上可知: 当 时,函数 在 取得极大值 ,没有极小值;当 时,函数 在 取得极小值 ,没有极大值(3)设切点为 ,则曲线在点 处的切线 方程为 ,当 时,切线 的方程为 ,其在 轴上的截距不存在当 时,令 ,得切线 在 轴上的截距为, 当 时,当且仅当 ,即 或 时取等号; 当 时,精选高中模拟试卷第 19 页,共 19 页当且仅当 ,即 或 时取等号.所以切线 在 轴上的截距范围是 .点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为 0 的点,再判断导数为 0 的点的左、右两侧的导数符号.(2)已知函数求极值.求 求方程 的根列表检验 在 的根的附近两侧的符号下结论.(3)已知极值求参数.若函数 在点 处取得极值,则 ,且在该点左、右两侧的导数值符号相反.