收藏 分享(赏)

夏津县高中2018-2019学年高二上学期第一次月考试卷数学.doc

上传人:爱你没说的 文档编号:8615685 上传时间:2019-07-06 格式:DOC 页数:17 大小:678.50KB
下载 相关 举报
夏津县高中2018-2019学年高二上学期第一次月考试卷数学.doc_第1页
第1页 / 共17页
夏津县高中2018-2019学年高二上学期第一次月考试卷数学.doc_第2页
第2页 / 共17页
夏津县高中2018-2019学年高二上学期第一次月考试卷数学.doc_第3页
第3页 / 共17页
夏津县高中2018-2019学年高二上学期第一次月考试卷数学.doc_第4页
第4页 / 共17页
夏津县高中2018-2019学年高二上学期第一次月考试卷数学.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 17 页夏津县高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知 0 ,0 ,直线 x= 和 x= 是函数 f(x)=sin(x+)图象的两条相邻的对称轴,则=( )A B C D2 某个几何体的三视图如图所示,该几何体的表面积为 9214,则该几何体的体积为( )A8020B4020C6010D80103 已知函数 f(x)= x3+mx2+(2m+3)x(mR)存在两个极值点 x1,x 2,直线 l 经过点 A(x 1,x 12),B(x 2,x 22),记圆(x+1) 2+y2= 上的点到直线 l 的最短距离

2、为 g(m),则 g(m)的取值范围是( )A0,2 B0,3 C0, ) D0 , )4 双曲线 的焦点与椭圆 的焦点重合,则 m 的值等于( )A12 B20 C D5 已知向量 =(2,1), =10,| + |= ,则| |=( )A B C5 D25精选高中模拟试卷第 2 页,共 17 页6 若椭圆 + =1 的离心率 e= ,则 m 的值为( )A1 B 或 C D3 或7 设向量 , 满足:| |=3,| |=4, =0以 , , 的模为边长构成三角形,则它的边与半径为 1的圆的公共点个数最多为( )A3 B4 C5 D68 若 满足约束条件 ,则当 取最大值时, 的值为( )y

3、x,03yx31xyyxA B C D1 39 函数 f(x)=1 xlnx 的零点所在区间是( )A(0, ) B( ,1) C(1,2) D(2,3)10已知一个算法的程序框图如图所示,当输出的结果为 时,则输入的值为( )21A B C 或 D 或2121011若函数 f(x)=2sin( x+)对任意 x 都有 f( +x)=f( x),则 f( )=( )A2 或 0 B0 C 2 或 0 D2 或 212与椭圆 有公共焦点,且离心率 的双曲线方程为( )A B精选高中模拟试卷第 3 页,共 17 页C D二、填空题13定义:分子为 1 且分母为正整数的分数叫做单位分数我们可以把 1

4、 拆分为无穷多个不同的单位分数之和例如:1= + + ,1= + + + ,1= + + + + ,依此方法可得:1= + + + + + + + + + + + ,其中 m,nN *,则 m+n= 14已知数列 的首项 ,其前 项和为 ,且满足 ,若对 ,na1nS213nSnN1na恒成立,则 的取值范围是_【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力15“ 黑白配 ”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示

5、的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负现在甲乙丙三人一起玩“黑白配” 游戏设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 16【泰州中学 2018 届高三 10 月月考】设函数 是奇函数 的导函数, ,当 时,fxfx10fx,则使得 成立的 的取值范围是_0xff 0fx17下列说法中,正确的是 (填序号)若集合 A=x|kx2+4x+4=0中只有一个元素,则 k=1;在同一平面直角坐标系中,y=2 x与 y=2x的图象关于 y 轴对称;y=( ) x是增函数;定义在 R 上的奇函数 f(x)有 f(x)f(x)018在AB

6、C 中,点 D 在边 AB 上,CDBC,AC=5 ,CD=5,BD=2AD,则 AD 的长为 三、解答题19如图,在四棱锥 PABCD 中,PD平面 ABCD,PD=DC=BC=1,AB=2,ABDC, BCD=90(1)求证:PCBC;精选高中模拟试卷第 4 页,共 17 页(2)求点 A 到平面 PBC 的距离20已知函数 f(x)=x|xm|,x R且 f(4)=0(1)求实数 m 的值(2)作出函数 f(x)的图象,并根据图象写出 f(x)的单调区间(3)若方程 f(x)=k 有三个实数解,求实数 k 的取值范围精选高中模拟试卷第 5 页,共 17 页21某志愿者到某山区小学支教,为

7、了解留守儿童的幸福感,该志愿者对某班 40 名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于 70,说明孩子幸福感弱;幸福指数不低于 70,说明孩子幸福感强)(1)根据茎叶图中的数据完成 列联表,并判断能否有 的把握认为孩子的幸福感强与是否是留295%守儿童有关?幸福感强 幸福感弱 总计留守儿童非留守儿童总计 1111(2)从 15 个留守儿童中按幸福感强弱进行分层抽样,共抽取 5 人,又在这 5 人中随机抽取 2 人进行家访,求这 2 个学生中恰有一人幸福感强的概率参考公式:22()(nadbcK附表: 20()Pk0.050 0.01003.841 6.635精

8、选高中模拟试卷第 6 页,共 17 页22已知 a0,a 1,命题 p:“函数 f(x)=a x在(0,+)上单调递减”,命题 q:“ 关于 x 的不等式 x22ax+0 对一切的 xR 恒成立”,若 pq 为假命题,pq 为真命题,求实数 a 的取值范围23已知 y=f(x)的定义域为1,4 ,f(1)=2,f (2)=3当 x1,2时,f (x)的图象为线段;当x2,4时,f(x)的图象为二次函数图象的一部分,且顶点为(3,1)(1)求 f(x)的解析式;(2)求 f(x)的值域24在平面直角坐标系 xOy 中,圆 C:x 2+y2=4,A( ,0),A 1( ,0),点 P 为平面内一动

9、点,以PA 为直径的圆与圆 C 相切()求证:|PA 1|+|PA|为定值,并求出点 P 的轨迹方程 C1;()若直线 PA 与曲线 C1的另一交点为 Q,求 POQ 面积的最大值精选高中模拟试卷第 7 页,共 17 页夏津县高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:因为直线 x= 和 x= 是函数 f(x)=sin(x+ )图象的两条相邻的对称轴,所以 T= =2所以 =1,并且 sin( +)与 sin( +)分别是最大值与最小值,0,所以 = 故选 A【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力

10、2 【答案】【解析】解析:选 D.该几何体是在一个长方体的上面放置了半个圆柱依题意得(2r2r r2)252r252r r59214 ,12即(8)r 2(305)r(9214 )0,即(r2)(8)r467 0,r2,该几何体的体积为(44 22)58010.123 【答案】C【解析】解:函数 f(x)= x3+mx2+(2m+3)x 的导数为 f(x)=x 2+2mx+2m+3,由题意可得,判别式0,即有 4m24(2m+3)0,解得 m3 或 m1,又 x1+x2=2m,x 1x2=2m+3,直线 l 经过点 A(x 1,x 12),B(x 2,x 22),即有斜率 k= =x1+x2=

11、2m,则有直线 AB:y x12=2m(xx 1),精选高中模拟试卷第 8 页,共 17 页即为 2mx+y2mx1x12=0,圆(x+1) 2+y2= 的圆心为( 1,0),半径 r 为 则 g(m)=dr= ,由于 f(x 1)=x 12+2mx1+2m+3=0,则 g(m)= ,又 m3 或 m1,即有 m21则 g(m) = ,则有 0g(m) 故选 C【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题4 【答案】A【解析】解:椭圆 的焦点为(4,0),由双曲线 的焦点与椭圆的重

12、合,可得 =4,解得 m=12故选:A5 【答案】C【解析】解:| + |= ,| |=( + ) 2= 2+ 2+2 =50,得| |=5故选 C【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用6 【答案】D精选高中模拟试卷第 9 页,共 17 页【解析】解:当椭圆 + =1 的焦点在 x 轴上时,a= ,b= ,c=由 e= ,得 = ,即 m=3当椭圆 + =1 的焦点在 y 轴上时,a= ,b= ,c=由 e= ,得 = ,即 m= 故选 D【点评】本题主要考查了椭圆的简单性质解题时要

13、对椭圆的焦点在 x 轴和 y 轴进行分类讨论7 【答案】B【解析】解:向量 ab=0,此三角形为直角三角形,三边长分别为 3,4,5,进而可知其内切圆半径为1,对于半径为 1 的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现 4 个交点的情况,但 5 个以上的交点不能实现故选 B【点评】本题主要考查了直线与圆的位置关系可采用数形结合结合的方法较为直观8 【答案】D【解析】精选高中模拟试卷第 10 页,共 17 页考点:简单线性规划9 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln 0,函数 f(x)=1 xlnx 的零点所在区间

14、是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反10【答案】 D【解析】试题分析:程序是分段函数 ,当 时, ,解得 ,当 时, ,xylg20x21x1x021lgx解得 ,所以输入的是 或 ,故选 D.10x1考点:1.分段函数;2.程序框图.1111111【答案】D【解析】解:由题意:函数 f(x)=2sin(x+),f( +x)=f(x),精选高中模拟试卷第 11 页,共 17 页可知函数的对称轴为 x= = ,根据三角函数的性质可知,当 x= 时,函数取得最大值或者最小值f( )=2 或2故选 D1

15、2【答案】 A【解析】解:由于椭圆的标准方程为:则 c2=132122=25则 c=5又双曲线的离心率a=4,b=3又因为且椭圆的焦点在 x 轴上,双曲线的方程为:故选 A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于 a,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为 mx2+ny2=1(m 0,n0,mn),双曲线方程可设为 mx2ny2=1(m0,n0,mn),由题目所给条件求出 m,n 即可二、填空题13【答案】 33 【解析】解:1= + + + + + + + + + + + + ,2=12,6=23,30=56,精选

16、高中模拟试卷第 12 页,共 17 页42=67,56=78,72=89,90=910,110=1011,132=1112,1= + + + + + + + + + + + + =(1 )+ + +( )+ ,+ = = + = ,m=20,n=13,m+n=33,故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题14【答案】 15(,)4315【答案】 【解析】解:一次游戏中,甲、乙、丙出的方法种数都有 2 种,所以总共有 23=8 种方案,而甲胜出的情况有:“甲黑乙白丙白”,“ 甲白乙黑丙黑”,共 2 种,所以甲胜出的概率为故答案为 【点评】本题考查等可能事件的

17、概率,关键是分清甲在游戏中胜出的情况数目16【答案】 ,10,精选高中模拟试卷第 13 页,共 17 页【解析】17【答案】 【解析】解:若集合 A=x|kx2+4x+4=0中只有一个元素,则 k=1 或 k=0,故错误;在同一平面直角坐标系中,y=2 x与 y=2x的图象关于 y 轴对称,故正确;y=( ) x是减函数,故错误;定义在 R 上的奇函数 f(x)有 f(x)f(x)0,故正确故答案为:【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档18【答案】 5 【解析】解:如图所示:延长 BC,过 A 做 AEBC ,垂足为 E,CDBC,CD

18、 AE,CD=5,BD=2AD, ,解得 AE= ,在 RTACE,CE= = = ,由 得 BC=2CE=5 ,在 RTBCD 中,BD= = =10,则 AD=5,故答案为:5【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题精选高中模拟试卷第 14 页,共 17 页三、解答题19【答案】 【解析】解:(1)证明:因为 PD平面 ABCD,BC 平面 ABCD,所以 PDBC由BCD=90,得 CDBC,又 PDDC=D, PD、DC平面 PCD,所以 BC平面 PCD因为 PC平面 PCD,故 PCBC(2)(方法一)分别取 AB、PC 的中点 E、F,连 D

19、E、DF,则:易证 DECB,DE平面 PBC,点 D、E 到平面 PBC 的距离相等又点 A 到平面 PBC 的距离等于 E 到平面 PBC 的距离的 2 倍由(1)知:BC平面 PCD,所以平面 PBC平面 PCD 于 PC,因为 PD=DC,PF=FC,所以 DFPC,所以 DF平面 PBC 于 F易知 DF= ,故点 A 到平面 PBC 的距离等于 (方法二)等体积法:连接 AC设点 A 到平面 PBC 的距离为 h因为 ABDC ,BCD=90,所以ABC=90从而 AB=2,BC=1,得ABC 的面积 SABC =1由 PD平面 ABCD 及 PD=1,得三棱锥 PABC 的体积

20、因为 PD平面 ABCD,DC平面 ABCD,所以 PDDC又 PD=DC=1,所以 由 PC BC,BC=1,得PBC 的面积 由 VAPBC=VPABC, ,得 ,故点 A 到平面 PBC 的距离等于 【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力20【答案】 【解析】解:(1)f(4) =0,4|4 m|=0精选高中模拟试卷第 15 页,共 17 页m=4,(2)f(x)=x|x4|= 图象如图所示:由图象可知,函数在(,2 ),(4,+)上单调递增,在(2,4)上单调递减(3)方程 f(x)=k 的解的个数等价于函数

21、y=f(x)与函数 y=k 的图象交点的个数,由图可知 k(0,4)21【答案】(1)有 的把握认为孩子的幸福感强与是否留守儿童有关;(2) .95%35【解析】试题解析:(1)列联表如下:幸福感强 幸福感弱 总计留守儿童 6 9 15非留守儿童 18 7 25总计 24 16 40 2240(67918)43.15K有 的把握认为孩子的幸福感强与是否留守儿童有关9%精选高中模拟试卷第 16 页,共 17 页(2)按分层抽样的方法可抽出幸福感强的孩子 2 人,记作: , ;幸福感强的孩子 3 人,记作:1a2, , 1b3“抽取 2 人”包含的基本事件有 , , , , , , ,12(,)a

22、1(,)b2(,)3(,)b1(,)2(,)ab23(,), , 共 10 个(,)1(,)23(,)b事件 :“恰有一人幸福感强”包含的基本事件有 , , , , ,A1,a12,3,1,共 6 个23,ab故 ()105P考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式.22【答案】 【解析】解:若 p 为真,则 0a1;若 q 为真,则=4a 210,得 ,又 a0,a1, 因为 pq 为假命题,pq 为真命题,所以 p,q 中必有一个为真,且另一个为假当 p 为真,q 为假时,由 ;当 p 为假,q 为真时, 无解 综上,a 的取值范围是 【点评】1求解本题时,应注意大前提“

23、a0,a 1”,a 的取值范围是在此条件下进行的23【答案】 【解析】解:(1)当 x1,2时 f(x)的图象为线段,设 f(x)=ax+b,又有 f(1)=2,f (2)=3a+b=2 ,2a+b=3,解得 a=1,b=1,f(x)=x+1,当 x2,4 时, f(x)的图象为二次函数的一部分,且顶点为(3,1),设 f(x)=a (x 3) 2+1,又 f(2)=3,所以代入得 a+1=3,a=2,f( x)=2 (x 3) 2+1(2)当 x1,2,2f(x)3,精选高中模拟试卷第 17 页,共 17 页当 x2,4 ,1 f(x)3,所以 1f(x)3故 f(x)的值域为1,3 24【

24、答案】 【解析】()证明:设点 P(x,y),记线段 PA 的中点为 M,则两圆的圆心距 d=|OM|= |PA1|=R |PA|,所以,|PA 1|+|PA|=42 ,故点 P 的轨迹是以 A,A 1为焦点,以 4 为长轴的椭圆,所以,点 P 的轨迹方程 C1为: =1 ()解:设 P(x 1,y 1),Q(x 2,y 2),直线 PQ 的方程为:x=my+ ,代入 =1 消去 x,整理得:(m 2+4)y 2+2 my1=0,则 y1+y2= ,y 1y2= ,POQ 面积 S= |OA|y1y2|=2 令 t= (0 ,则 S=2 1(当且仅当 t= 时取等号)所以,POQ 面积的最大值 1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报