1、精选高中模拟试卷第 1 页,共 17 页吴堡县高中 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知双曲线的方程为 =1,则双曲线的离心率为( )A B C 或 D 或2 已知回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),则回归直线的方程是( )A =1.23x+4 B =1.23x0.08 C =1.23x+0.8 D =1.23x+0.083 不等式 ax2+bx+c0(a 0)的解集为 R,那么( )Aa0,0 Ba 0,0 Ca 0,0 Da0,04 已知直线 与圆 交于 两点, 为直线 上任341mxy: 2()4xy: A
2、B、 P340nxy:意一点,则 的面积为( )PA B. C. D. 22335 已知函数 f(x)=sin 2(x) ( 0)的周期为 ,若将其图象沿 x 轴向右平移 a 个单位(a0),所得图象关于原点对称,则实数 a 的最小值为( )A B C D6 已知命题 p:对任意 0x, , 48loglx,命题:存在 xR,使得 tan13x,则下列命题为真命题的是( )A q B pq C pq D pq7 平面 与平面 平行的条件可以是( )A 内有无穷多条直线与 平行B直线 a, aC直线 a,直线 b,且 a,bD 内的任何直线都与 平行8 从 1,2,3,4,5 中任取 3 个不同
3、的数,则取出的 3 个数可作为三角形的三边边长的概率是( )A B C D9 集合 的真子集共有( ),A个 B个 C个 D个精选高中模拟试卷第 2 页,共 17 页10若集合 A=x|2x1,B=x|0x2 ,则集合 AB=( )Ax|1x 1 Bx| 2 x1 Cx| 2x2 Dx|0x111设等比数列a n的公比 q=2,前 n 项和为 Sn,则 =( )A2 B4 C D12在ABC 中,a ,b,c 分别是角 A,B ,C 的对边,a=5,b=4,cosC= ,则ABC 的面积是( )A16 B6 C4 D8二、填空题13在ABC 中,若角 A 为锐角,且 =(2,3), =(3,m
4、 ),则实数 m 的取值范围是 14函数 y=1 (xR)的最大值与最小值的和为 2 15已知 sin+cos= ,且 ,则 sincos 的值为 16命题“ x R,2x 23ax+90”为假命题,则实数 a 的取值范围为 17设 f(x)是(x 2+ ) 6 展开式的中间项,若 f(x)mx 在区间 , 上恒成立,则实数 m 的取值范围是 18已知 x、y 之间的一组数据如下:x 0 1 2 3y 8 2 6 4则线性回归方程 所表示的直线必经过点 三、解答题19如图,已知五面体 ABCDE,其中ABC 内接于圆 O,AB 是圆 O 的直径,四边形 DCBE 为平行四边形,且 DC平面 A
5、BC()证明:ADBC()若 AB=4,BC=2 ,且二面角 ABDC 所成角 的正切值是 2,试求该几何体 ABCDE 的体积精选高中模拟试卷第 3 页,共 17 页20(本小题满分 12 分)已知圆 : 的圆心在第二象限,半径为 ,且圆 与直线 及 轴C02FEyDx 2C043yx都相切.(1)求 ;、(2)若直线 与圆 交于 两点,求 .yxCBA、 |21(本小题满分 12 分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下: 精选高中模拟试卷第 4 页,共 17 页506780910.1.205a频 率组 距O销售量/千克()求频率分布直方图中的 的值,并估计
6、每天销售量的中位数;a()这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理每售出 1 千克蔬菜获利 4 元,未售出的蔬菜,每千克亏损 2 元假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为 75千克时获利的平均值22【盐城中学 2018 届高三上第一次阶段性考试】已知函数 f(x)=ax 2+lnx(aR)(1)当 a= 时,求 f(x)在区间1,e上的最大值和最小值;2(2)如果函数 g(x),f 1( x),f 2(x),在公共定义域 D 上,满足 f1(x)g(x)f 2(x),那么就称g(x)为 f1(x),f 2(x)的“活动函数”已知函数 .21 -aln
7、,fxa。若在区间(1,+)上,函数 f(x)是 f1(x),f 2(x)的“活动函数”,求 a 的取值2fa范围精选高中模拟试卷第 5 页,共 17 页23如图,在平面直角坐标系 xOy 中,已知曲线 C 由圆弧 C1 和圆弧 C2 相接而成,两相接点 M,N 均在直线x=5 上,圆弧 C1 的圆心是坐标原点 O,半径为 13;圆弧 C2 过点 A(29,0)(1)求圆弧 C2 的方程;(2)曲线 C 上是否存在点 P,满足 ?若存在,指出有几个这样的点;若不存在,请说明理由24直三棱柱 ABCA 1B1C1 中,AA 1=AB=AC=1,E,F 分别是 CC1、BC 的中点,AEA1B1,
8、D 为棱 A1B1 上的点(1)证明:DFAE;(2)是否存在一点 D,使得平面 DEF 与平面 ABC 所成锐二面角的余弦值为 ?若存在,说明点 D 的位置,若不存在,说明理由精选高中模拟试卷第 6 页,共 17 页精选高中模拟试卷第 7 页,共 17 页吴堡县高中 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:双曲线的方程为 =1,焦点坐标在 x 轴时,a 2=m,b 2=2m,c 2=3m,离心率 e= 焦点坐标在 y 轴时,a 2=2m,b 2=m ,c 2=3m,离心率 e= = 故选:C【点评】本题考查双曲线的离心率的求法,注意
9、实轴所在轴的易错点2 【答案】D【解析】解:设回归直线方程为 =1.23x+a样本点的中心为(4,5),5=1.234+aa=0.08回归直线方程为 =1.23x+0.08故选 D【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题3 【答案】A【解析】解:不等式 ax2+bx+c0(a 0)的解集为 R,a0,且=b 24ac0,综上,不等式 ax2+bx+c0(a 0)的解集为的条件是:a 0 且0故选 A4 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心 到直线 的距离 , ,两平行直线 之间的距离为 ,m1d2| 3ABrdmn、 3d
10、精选高中模拟试卷第 8 页,共 17 页的面积为 ,选 CPAB1|32d5 【答案】D【解析】解:由函数 f(x)=sin 2(x) = cos2x (0)的周期为 =,可得 =1,故 f(x)= cos2x若将其图象沿 x 轴向右平移 a 个单位(a0),可得 y= cos2(xa)= cos(2x 2a)的图象;再根据所得图象关于原点对称,可得 2a=k+ ,a= + ,kZ则实数 a 的最小值为 故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数 y=Acos(x+)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题6 【答案】D【解析】考点:命题的真假.7 【答案】
11、D【解析】解:当 内有无穷多条直线与 平行时,a 与 可能平行,也可能相交,故不选 A当直线 a,a 时,a 与 可能平行,也可能相交,故不选 B当直线 a,直线 b,且 a 时,直线 a 和直线 b 可能平行,也可能是异面直线,故不选 C当 内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况8 【答案】A精选高中模拟试卷第 9 页,共 17 页【解析】解:从 1,2,3,4,5 中任取 3 个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5
12、),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共 10个,取出的 3 个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共 3 个,故取出的 3 个数可作为三角形的三边边长的概率 P= 故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件9 【答案】C【解析】考点:真子集的概念.10【答案】D【解析】解:AB=x| 2x1x|0x2=x|0x1故选 D11【答案】C【解析】解:由于 q=2, ;故选:C12【答案】D【解析】解:a=5,b=4,cosC= ,可得:sin
13、C= = ,SABC= absinC= =8故选:D精选高中模拟试卷第 10 页,共 17 页二、填空题13【答案】 【解析】解:由于角 A 为锐角, 且 不共线,6+3m0 且 2m9,解得 m2 且 m 实数 m 的取值范围是 故答案为: 【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题14【答案】2【解析】解:设 f(x)= ,则 f(x)为奇函数,所以函数 f(x)的最大值与最小值互为相反数,即 f(x)的最大值与最小值之和为 0将函数 f(x)向上平移一个单位得到函数 y=1 的图象,所以此时函数y=1 (xR )的最大值与最小值的和为 2故答案为:2【点评】本题
14、考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键15【答案】 【解析】解:sin+cos= , ,sin 2+2sin cos+cos 2= ,2sincos= 1= ,且 sincos,sincos= = 精选高中模拟试卷第 11 页,共 17 页故答案为: 16【答案】2 a2【解析】解:原命题的否定为“xR,2x 23ax+90 ”,且为真命题,则开口向上的二次函数值要想大于等于 0 恒成立,只需=9a 24290,解得:2 a2 故答案为:2 a2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错所以,可以采用数学
15、上正难则反的思想,去从它的反面即否命题去判定注意“恒成立”条件的使用17【答案】 5,+) 【解析】二项式定理【专题】概率与统计;二项式定理【分析】由题意可得 f(x) = x3,再由条件可得 m x2 在区间 , 上恒成立,求得 x2 在区间 ,上的最大值,可得 m 的范围【解答】解:由题意可得 f( x)= x6 = x3由 f(x)mx 在区间 , 上恒成立,可得 m x2 在区间 , 上恒成立,由于 x2 在区间 , 上的最大值为 5,故 m5,即 m 的范围为5,+),故答案为:5,+)【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题
16、,属于中档题18【答案】 ( ,5) 【解析】解: , =5线性回归方程 y=a+bx 所表示的直线必经过点(1.5,5)故选 C精选高中模拟试卷第 12 页,共 17 页【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点三、解答题19【答案】 【解析】()证明:AB 是圆 O 的直径,ACBC,又DC平面 ABCDCBC,又 ACCD=C,BC平面 ACD,又 AD平面 ACD,ADBC()解:设 CD=a,以 CB,CA,CD 所在直线分别为 x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示则 C(0,0,0),B(2,0,0)
17、, , D(0,0,a)由()可得,AC平面 BCD,平面 BCD 的一个法向量是 = ,设 =(x,y,z)为平面 ABD 的一个法向量,由条件得, = , =(2,0,a) 即 ,不妨令 x=1,则 y= ,z= , = 又二面角 ABDC 所成角 的正切值是 2, =cos= , = = ,解得 a=2 精选高中模拟试卷第 13 页,共 17 页V ABCDE=VEADC+VEABC= += +=8该几何体 ABCDE 的体积是 8【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力
18、,属于难题20【答案】(1) , , ;(2) .2D4E8FAB【解析】试题解析:(1)由题意,圆 方程为 ,且 ,C2)()(2byax0,ba圆 与直线 及 轴都相切, , , ,C043yx 5|43|2圆 方程为 ,)()2(2化为一般方程为 ,084yx , , .D4EF(2)圆心 到直线 的距离为 ,)2,(C2 12| d .1|2drAB精选高中模拟试卷第 14 页,共 17 页考点:圆的方程;2.直线与圆的位置关系.121【答案】(本小题满分 12 分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数()由 得 (3 分)(0.5.10.25)10a.
19、5每天销售量的中位数为 千克 (6 分)774.3.()若当天的销售量为 ,则超市获利 元;,6)2180若当天的销售量为 ,则超市获利 元;0504若当天的销售量为 ,则超市获利 元, (10 分),1获利 的平均值为 元. (12 分).58.240.63722【答案】(1) (2)a 的范围是 .maxmin1,.effx1,24【解析】试题分析:(1)由题意得 f(x)= x2+lnx, , f(x)在区间1,e上为f0xx增函数,即可求出函数的最值试题解析:(1)当 时, , ;对于 x1,e,有 f(x) 0,f(x)在区间1,e上为增函数, , (2)在区间(1,+)上,函数 f
20、(x)是 f1(x),f 2(x)的“活动函数”,则 f1(x)f(x)f 2(x)令 0,对 x(1,+)恒成立,且 h(x)=f 1(x)f(x)= 0 对 x(1,+)恒成立,精选高中模拟试卷第 15 页,共 17 页若 ,令 p(x)=0,得极值点 x1=1, ,当 x2x 1=1,即 时,在(x 2,+)上有 p(x)0,此时 p(x)在区间(x 2,+)上是增函数,并且在该区间上有 p(x)(p(x 2),+),不合题意;当 x2x 1=1,即 a1 时,同理可知,p(x)在区间(1,+)上,有 p(x)(p(1),+),也不合题意;若 ,则有 2a10,此时在区间(1,+)上恒有
21、 p(x)0,从而 p(x)在区间(1,+)上是减函数;要使 p(x)0 在此区间上恒成立,只须满足 ,所以 a 又因为 h(x)=x+2a = 0,h(x)在(1,+)上为减函数,h(x)h(1)= +2a0,所以 a综合可知 a 的范围是 , 23【答案】 【解析】解:(1)圆弧 C1 所在圆的方程为 x2+y2=169,令 x=5,解得 M(5,12),N(5, 12)2 分则直线 AM 的中垂线方程为 y6=2(x17),令 y=0,得圆弧 C2 所在圆的圆心为 (14,0),又圆弧 C2 所在圆的半径为 2914=15,所以圆弧 C2 的方程为(x 14) 2+y2=225(5 x2
22、9)5 分(2)假设存在这样的点 P(x,y),则由 PA= PO,得 x2+y2+2x29=0 8 分由 ,解得 x=70 (舍去) 9 分由 ,解得 x=0(舍去),综上知,这样的点 P 不存在10 分精选高中模拟试卷第 16 页,共 17 页【点评】本题以圆为载体,考查圆的方程,考查曲线的交点,同时考查距离公式的运用,综合性强24【答案】【解析】(1)证明:AE A1B1,A 1B1AB,AEAB,又AA 1AB,AA 1AE=A,AB面 A1ACC1,又AC面 A1ACC1,ABAC,以 A 为原点建立如图所示的空间直角坐标系 Axyz,则有 A(0,0,0),E(0, 1, ),F
23、( , ,0),A 1(0,0,1),B 1(1,0,1),设 D(x,y,z), 且 ,即(x,y,z 1)=(1,0,0),则 D(,0,1),所以 =( , ,1), =(0,1, ), = =0,所以 DFAE; (2)结论:存在一点 D,使得平面 DEF 与平面 ABC 所成锐二面角的余弦值为 理由如下:设面 DEF 的法向量为 =(x,y,z),则 , =( , , ), =( ,1), ,即 ,令 z=2(1),则 =(3,1+2,2(1)由题可知面 ABC 的法向量 =(0,0,1),平面 DEF 与平面 ABC 所成锐二面角的余弦值为 ,|cos , |= = ,即 = ,解得 或 (舍),所以当 D 为 A1B1 中点时满足要求精选高中模拟试卷第 17 页,共 17 页【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题