1、精选高中模拟试卷第 1 页,共 20 页双桥区高级中学 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知函数 ,关于 的方程 ( )有 3 个相异的实数根,则 的()xef=2()()10fxaf-+-=aR a取值范围是( )A B C D2(,)1e-+21(,)e-2(0,)1e-21e-【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力2 已知 d 为常数,p:对于任意 nN*,a n+2an+1=d;q:数列 an是公差为 d 的等差数列,则p 是q 的( )A充分不必要条件 B必要不充分
2、条件C充要条件 D既不充分也不必要条件3 已知全集为 ,且集合 , ,则 等于( )R2)1(log|2xA012|xB)(BCARA B C D)1,(1,(,【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.4 (2014 新课标 I)如图,圆 O 的半径为 1,A 是圆上的定点,P 是圆上的动点,角 x 的始边为射线 OA,终边为射线 OP,过点 P 做直线 OA 的垂线,垂足为 M,将点 M 到直线 OP 的距离表示为 x 的函数 f(x),则 y=f(x)在0,的图象大致为( )精选高中模拟试卷第 2 页,共 20
3、 页A B CD5 如图 ,三行三列的方阵中有 9 个数 aij(i=1,2,3;j=1 ,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A B C D6 设函数 yfx是 yfx的导数.某同学经过探究发现,任意一个三次函数320fxabcda都有对称中心 0,xf,其中 0x满足 0f.已知函数151,则 23216.717ff f( )A 0 B 4 C 2015 D 2611117 已知函数 ,则 ( )(5)2)exff xf(2016)fA B C1 D2e e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力8 以 的焦点为顶点,顶点为焦点的椭
4、圆方程为( )A BC D精选高中模拟试卷第 3 页,共 20 页9 已知函数 f(x)的定义域为 R,其导函数 f(x)的图象如图所示,则对于任意 x1,x 2R( x1x2),下列结论正确的是( )f(x)0 恒成立;(x 1x2)f(x 1)f(x 2)0;(x 1x2)f(x 1)f(x 2)0; ; A B C D10阅读如右图所示的程序框图,若输入 ,则输出的 值是( )0.45ak(A) 3 ( B ) 4 (C) 5 (D ) 611 在三角形 中,若 ,则 的大小为( )A B C D12已知双曲线 =1 的右焦点与抛物线 y2=12x 的焦点重合,则该双曲线的焦点到其渐近线
5、的距离等于( )A B C3 D5二、填空题13复数 z= (i 虚数单位)在复平面上对应的点到原点的距离为 14函数 的单调递增区间是 精选高中模拟试卷第 4 页,共 20 页15【常熟中学 2018 届高三 10 月阶段性抽测(一)】已知函数 ,若曲线lnRxfa( 为自然对数的底数)上存在点 使得 ,则实数 的取值范围为12exy0,xy0y_.16已知(ax+1) 5的展开式中 x2的系数与 的展开式中 x3的系数相等,则 a= 17已知 是函数 两个相邻的两个极值点,且 在1,3xsin0ffx32处的导数 ,则 _02f118设向量 a(1,1),b(0,t),若(2ab)a2,则
6、 t_三、解答题19设函数 f(x)=x 36x+5,xR()求 f(x)的单调区间和极值;()若关于 x 的方程 f(x) =a 有 3 个不同实根,求实数 a 的取值范围20【淮安市淮海中学 2018 届高三上第一次调研】已知函数 .13xafb(1)当 时,求满足 的 的取值;1ab3xf(2)若函数 是定义在 上的奇函数fxR存在 ,不等式 有解,求 的取值范围;tR22ftftk若函数 满足 ,若对任意 ,不等式 恒成g13xgxxR21gxm立,求实数 的最大值.m精选高中模拟试卷第 5 页,共 20 页21【常熟中学 2018 届高三 10 月阶段性抽测(一)】如图,某公司的 L
7、OGO 图案是多边形 ,其ABEFMN设计创意如下:在长 、宽 的长方形 中,将四边形 沿直线 翻折到 (点4cm1ABCDFEC是线段 上异于 的一点、点 是线段 上的一点),使得点 落在线段 上.FADEND(1)当点 与点 重合时,求 面积;NNMF(2)经观察测量,发现当 最小时,LOGO 最美观,试求此时 LOGO 图案的面积.222已知函数 f(x)=ax 2+bx+c,满足 f(1)= ,且 3a2c2b(1)求证:a0 时, 的取值范围;(2)证明函数 f(x)在区间( 0,2)内至少有一个零点;(3)设 x1,x 2是函数 f(x)的两个零点,求 |x1x 2|的取值范围精选
8、高中模拟试卷第 6 页,共 20 页23设 f(x)=2x 3+ax2+bx+1 的导数为 f(x),若函数 y=f(x)的图象关于直线 x= 对称,且 f(1)=0()求实数 a,b 的值()求函数 f(x)的极值24某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班 40 名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于 70,说明孩子幸福感弱;幸福指数不低于 70,说明孩子幸福感强)(1)根据茎叶图中的数据完成 列联表,并判断能否有 的把握认为孩子的幸福感强与是否是留295%守儿童有关?幸福感强 幸福感弱 总计留守儿童非留守儿童总计 1111(2
9、)从 15 个留守儿童中按幸福感强弱进行分层抽样,共抽取 5 人,又在这 5 人中随机抽取 2 人进行家访,求这 2 个学生中恰有一人幸福感强的概率参考公式:22()(nadbcK附表:精选高中模拟试卷第 7 页,共 20 页20()PKk0.050 0.01003.841 6.635精选高中模拟试卷第 8 页,共 20 页双桥区高级中学 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】DxyOe1第卷(共 90 分)2 【答案】A【解析】解:p:对于任意 nN*,a n+2an+1=d;q:数列 an是公差为 d 的等差数列,则p: nN*,a n+2a
10、n+1d; q:数列 an不是公差为 d 的等差数列,由pq,即 an+2an+1 不是常数,则数列 an就不是等差数列,若数列 an不是公差为 d 的等差数列,则不存在 nN*,使得 an+2an+1d,即前者可以推出后者,前者是后者的充分条件,精选高中模拟试卷第 9 页,共 20 页即后者可以推不出前者,故选:A【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立3 【答案】C4 【答案】 C【解析】解:在直角三角形 OMP 中,OP=1,POM=x ,则 OM=|cosx|,点 M 到直线 OP 的距离表示为 x 的函数 f(x)=OM|
11、sinx|=|cosx|sinx|= |sin2x|,其周期为 T= ,最大值为 ,最小值为 0,故选 C【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用5 【答案】 D【解析】古典概型及其概率计算公式【专题】计算题;概率与统计【分析】利用间接法,先求从 9 个数中任取 3 个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论【解答】解:从 9 个数中任取 3 个数共有 C93=84 种取法,三个数分别位于三行或三列的情况有 6 种;所求的概率为 =故选 D【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂
12、,采用间接解法比较简单6 【答案】D精选高中模拟试卷第 10 页,共 20 页【解析】1201420152016.2777ffffff ,故选 D. 16考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数 320fxabcxda都有对称中心 0,xf”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出 的对称中心后再利用31521fxx对称性和的.
13、第卷(非选择题共 90 分)7 【答案】B【解析】 ,故选 B(2016)()(54031)(ffffe8 【答案】D【解析】解:双曲线 的顶点为(0,2 )和(0,2 ),焦点为(0,4)和(0,4)椭圆的焦点坐标是为(0,2 )和(0,2 ),顶点为(0,4)和(0,4)椭圆方程为 故选 D【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质9 【答案】 D精选高中模拟试卷第 11 页,共 20 页【解析】解:由导函数的图象可知,导函数 f(x)的图象在 x 轴下方,即 f(x)0,故原函数为减函数,并且是,递减的速度是先快后慢所以 f(x)的图象如图所示f(x
14、)0 恒成立,没有依据,故 不正确;表示(x 1x2)与f (x 1)f (x 2)异号,即 f(x)为减函数故正确;表示(x 1x2)与f (x 1)f (x 2)同号,即 f(x)为增函数故不正确,左边边的式子意义为 x1,x 2中点对应的函数值,即图中点 B 的纵坐标值,右边式子代表的是函数值得平均值,即图中点 A 的纵坐标值,显然有左边小于右边,故不正确,正确,综上,正确的结论为故选 D10【答案】 D.【解析】该程序框图计算的是数列前 项和,其中数列通项为n12nan最小值为 5 时满足1113522nS 90.45S,由程序框图可得 值是 6 故选 D0.4k11【答案】 A【解析
15、】由正弦定理知 ,不妨设 , , ,则有 ,所以 ,故选 A答案:A精选高中模拟试卷第 12 页,共 20 页12【答案】A【解析】解:抛物线 y2=12x 的焦点坐标为(3,0)双曲线 的右焦点与抛物线 y2=12x 的焦点重合4+b 2=9b 2=5双曲线的一条渐近线方程为 ,即双曲线的焦点到其渐近线的距离等于故选 A【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键二、填空题13【答案】 【解析】解:复数 z= =i( 1+i)=1i ,复数 z= (i 虚数单位)在复平面上对应的点(1,1)到原点的距离为: 故答案为: 【点评】本题考查复数的代数形式的混合运算
16、,复数的几何意义,考查计算能力14【答案】 2,3) 【解析】解:令 t=3+4xx20,求得 1x3,则 y= ,本题即求函数 t 在(1,3)上的减区间利用二次函数的性质可得函数 t 在(1,3)上的减区间为2,3),故答案为:2,3)15【答案】 ,e【解析】结合函数的解析式: 可得: ,12exy12xxey精选高中模拟试卷第 13 页,共 20 页令 y=0,解得:x=0,当 x0 时,y0,当 x y0,则 f(f(y 0)=f(c ) f(y 0)=cy 0,不满足 f(f(y 0)=y 0同理假设 f(y 0)=c0,g(x)在(0,e )单调递增,当 x=e 时取最大值,最大
17、值为 ,1ge当 x0 时,a-,a 的取值范围 .1,e点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号而解答本题(2)问时,关键是分离参数 k,把所求问题转化为求函数的最小值问题(2)若可导函数 f(x )在指定的区间 D 上单调递增(减),求参数范围问题,可转化为 f(x)0(或f( x)0)恒成立问题,从而构建不等式,要注意“”是否可以取到16【答案】 【解析】解:(ax+1) 5的展开式中 x2的项为 =10a2x2,x 2的系数为 10a2,与 的展开式中 x3的项为 =5x3,x 3的系数为 5,精选高中模拟试卷第 14 页,共 20 页10a 2=5,即 a2=
18、 ,解得 a= 故答案为: 【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键17【答案】 12【解析】考点:三角函数图象与性质,函数导数与不等式【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和 ,再结合极值点的导数等于零,可求出 .在求 的过程中,由于题目没有给定它的取值范围,需要用 来验证.求出 表达式后, 302ffx就可以求出 .113f18【答案】【解析】(2ab)a(2, 2t)(1,1)21(2t)(1)4t2,t2.答案:2三、解
19、答题19【答案】 【解析】解:()当 ,f( x)的单调递增区间是 ,单调递减区间是精选高中模拟试卷第 15 页,共 20 页当 ;当()由()的分析可知 y=f(x)图象的大致形状及走向,当 的图象有 3 个不同交点,即方程 f(x)= 有三解20【答案】(1) (2) ,61,【解析】 试题解析:(1)由题意, ,化简得13xx2310xx解得 ,3xx舍 或所以 (2)因为 是奇函数,所以 ,所以f 0fxf1130xxab化简并变形得: 326xabab要使上式对任意的 成立,则 且解得: ,因为 的定义域是 ,所以 舍去1 b或 fR 3ab所以 ,所以,3a13xf 12xxf对任
20、意 有:2,R 211211 33xxxfxf 精选高中模拟试卷第 16 页,共 20 页因为 ,所以 ,所以 ,12x2130x12fxf因此 在 R 上递减f因为 ,所以 ,2tftk2ttk即 在 时有解20k所以 ,解得: ,4t1t所以 的取值范围为 ,因为 ,所以23xfxg32xgf即 3所以 22xx不等式 恒成立,1gm即 ,233xx即: 恒成立9xx令 ,则 在 时恒成立,2xttt2t令 , ,ht21ht时, ,所以 在 上单调递减,3t0,3时, ,所以 在 上单调递增tht所以 ,所以min6htm所以,实数 m 的最大值为 6 考点:利用函数性质解不等式,不等式
21、恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。21【答案】(1) ;(2) .15c6234cm【解析】试题分析:(1)设 ,利用题意结合勾股定理可得 ,则 ,MFx214x158x精选高中模拟试卷第 17 页,共 20 页据此可得 的面积是 ;NMF215cm286试题解析:(1)设 ,则 , ,FxDFx21Nx , ,解之得 ,4NM21458 的面积是 ;25cm86(2)设 ,则 , ,ECFEBF ,2NF ,1
22、Mcossincos,FDtanNF2costi .22csNi , ,即 ,1414osin14tan ( 且 ),42ta,32 ( 且 ),4,设 ,则 ,令 得 ,cosfin21cosfin 0f23列表得精选高中模拟试卷第 18 页,共 20 页当 时, 取到最小值,23NFM此时, , ,ECEB3FNEFM6NF在 中, , , ,Rt1323在正 中, ,NF在梯形 中, , , ,AEB143AN234BE .MFEFNSSS六 边 形 梯 形 1234146答:当 最小时,LOGO 图案面积为 .2234cm点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,
23、建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.22【答案】【解析】解:(1)f(1) =a+b+c= ,3a+2b+2c=0又 3a2c2b,故 3a0,2b0,从而 a0,b0,又 2c=3a2b 及 3a2c2b 知 3a3a2b2ba0,33 2 ,即3 (2)根据题意有 f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+ac=ac下面对 c 的正负情况进行讨论:当 c0 时,a 0,f(0)=c 0 ,f (1)= 0所以函
24、数 f(x)在区间(0, 1)内至少有一个零点;当 c0 时,a 0,精选高中模拟试卷第 19 页,共 20 页f(1)= 0,f(2)=ac0所以函数 f(x)在区间(1, 2)内至少有一个零点;综合得函数 f(x)在区间( 0,2)内至少有一个零点;(3)x 1,x 2是函数 f(x )的两个零点x 1,x 2是方程 ax2+bx+c=0 的两根故 x1+x2= ,x 1x2= = =从而|x 1 x2|= = = 3 , |x1x 2| 【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的
25、关系,函数的零点等价于对应方程的根,等价于函数的图象与 x 轴交点的横坐标,解题时要注意根据题意合理的选择转化属于中档题23【答案】 【解析】解:()因 f(x) =2x3+ax2+bx+1,故 f(x) =6x2+2ax+b从而 f(x)=6 y=f(x)关于直线 x= 对称,从而由条件可知 = ,解得 a=3又由于 f(x) =0,即 6+2a+b=0,解得 b=12()由()知 f(x)=2x 3+3x212x+1f(x)=6x 2+6x12=6(x1)(x+2)令 f(x)=0,得 x=1 或 x=2当 x( ,2 )时,f (x)0,f(x)在(, 2)上是增函数;当 x(2,1)时
26、, f(x)0,f(x)在(2,1)上是减函数;当 x(1,+)时,f(x)0,f (x)在(1,+)上是增函数从而 f(x)在 x=2 处取到极大值 f( 2)=21 ,在 x=1 处取到极小值 f(1)=624【答案】(1)有 的把握认为孩子的幸福感强与是否留守儿童有关;(2) .95%35精选高中模拟试卷第 20 页,共 20 页【解析】试题解析:(1)列联表如下:幸福感强 幸福感弱 总计留守儿童 6 9 15非留守儿童 18 7 25总计 24 16 40 2240(67918)43.15K有 的把握认为孩子的幸福感强与是否留守儿童有关9%(2)按分层抽样的方法可抽出幸福感强的孩子 2 人,记作: , ;幸福感强的孩子 3 人,记作:1a2, , 1b3“抽取 2 人”包含的基本事件有 , , , , , , ,12(,)a1(,)b2(,)3(,)b1(,)2(,)ab23(,), , 共 10 个(,)1(,)23(,)b事件 :“恰有一人幸福感强”包含的基本事件有 , , , , ,A1,a12,3,1,共 6 个23,ab故 ()105P考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式.