收藏 分享(赏)

文山市高级中学2018-2019学年高二上学期第一次月考试卷数学.doc

上传人:爱你没说的 文档编号:8614254 上传时间:2019-07-06 格式:DOC 页数:19 大小:996.50KB
下载 相关 举报
文山市高级中学2018-2019学年高二上学期第一次月考试卷数学.doc_第1页
第1页 / 共19页
文山市高级中学2018-2019学年高二上学期第一次月考试卷数学.doc_第2页
第2页 / 共19页
文山市高级中学2018-2019学年高二上学期第一次月考试卷数学.doc_第3页
第3页 / 共19页
文山市高级中学2018-2019学年高二上学期第一次月考试卷数学.doc_第4页
第4页 / 共19页
文山市高级中学2018-2019学年高二上学期第一次月考试卷数学.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 19 页文山市高级中学 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 函数 是( )A最小正周期为 2的奇函数 B最小正周期为 的奇函数C最小正周期为 2的偶函数 D最小正周期为 的偶函数2 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数 f(x)= 被称为狄利克雷函数,其中 R 为实数集,Q 为有理数集,则关于函数 f(x)有如下四个命题:f (f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数 T,f(x+T)=f(x)对任意的 x=R 恒成立;存在三个点A(x 1,f(x 1),B(x 2, f

2、(x 2),C (x 3,f (x 3),使得 ABC 为等边三角形其中真命题的个数有( )A1 个 B2 个 C3 个 D4 个3 已知 x1,则函数 的最小值为( )A4 B3 C2 D14 若 ,则 等于( )A B C D5 有一学校高中部有学生 2000 人,其中高一学生 800 人,高二学生 600 人,高三学生 600 人,现采用分层抽样的方法抽取容量为 50 的样本,那么高一、高二、高三年级抽取的人数分别为( )A15,10,25 B20,15 ,15 C10,10,30 D10,20,206 ( + ) 2n(nN *)展开式中只有第 6 项系数最大,则其常数项为( )A12

3、0 B210 C252 D457 若圆 上有且仅有三个点到直线 是实数)的距离为,260xy10(axya则 ( )aA B C D1242328 已知集合 A=1,0,1,2 ,集合 B=0,2,4,则 AB 等于( )精选高中模拟试卷第 2 页,共 19 页A 1,0,1,2,4 B1,0,2,4C0,2,4 D0 ,1,2,49 函数 f(x)=1 xlnx 的零点所在区间是( )A(0, ) B( ,1) C(1,2) D(2,3)10在ABC 中,若 A=2B,则 a 等于( )A2bsinA B2bcosA C2bsinB D2bcosB11若如图程序执行的结果是 10,则输入的

4、x 的值是( ) A0 B10 C10 D10 或1012某大学的 名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽8车,每车限坐 名同学(乘同一辆车的 名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘44坐甲车的 名同学中恰有 名同学是来自同一年级的乘坐方式共有( )种.2A B C D21836【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力二、填空题13满足 tan(x+ ) 的 x 的集合是 14已知平面上两点 M( 5,0)和 N(5,0),若直线上存在点 P 使|PM|PN|=6,则称该直线为“单曲型直线”

5、,下列直线中:y=x+1 y=2 y= x y=2x+1是“单曲型直线” 的是 精选高中模拟试卷第 3 页,共 19 页15已知圆 的方程为 ,过点 的直线与圆 交于 两点,若使C230xy1,2PC,ABA最小则直线的方程是 16【南通中学 2018 届高三 10 月月考】定义在 上的函数 满足 , 为 的导函数,且对 恒成立,则 的取值范围是_.17当 时,4 xlog ax,则 a 的取值范围 18平面内两定点 M(0,一 2)和 N(0,2),动点 P(x,y)满足 ,动点 P 的轨迹为曲线 E,给出以下命题: m,使曲线 E 过坐标原点;对 m,曲线 E 与 x 轴有三个交点;曲线

6、E 只关于 y 轴对称,但不关于 x 轴对称;若 P、M 、 N 三点不共线,则 PMN 周长的最小值为 2 4;m曲线 E 上与 M,N 不共线的任意一点 G 关于原点对称的另外一点为 H,则四边形 GMHN的面积不大于 m。其中真命题的序号是 (填上所有真命题的序号)三、解答题19已知函数 21ln,fxaxR(1)令 ,讨论 的单调区间;gg(2)若 ,正实数 满足 ,证明 a12,1210ffx125x20已知函数 f(x)= +lnx1(a 是常数,e =2.71828)(1)若 x=2 是函数 f(x)的极值点,求曲线 y=f(x)在点(1,f(1)处的切线方程;精选高中模拟试卷第

7、 4 页,共 19 页(2)当 a=1 时,方程 f(x) =m 在 x ,e 2上有两解,求实数 m 的取值范围;(3)求证:nN*,ln(en)1+ 21本小题满分 12 分 设函数 ()lnxfea讨论 的导函数 零点个数;()fxfx证明:当 时,0a()2la22【常州市 2018 届高三上武进区高中数学期中】已知函数 , 21lnfxaxRa若曲线 在点 处的切线经过点 ,求实数 的值;yfx1,f2,1若函数 在区间 上单调,求实数 的取值范围;23a设 ,若对 , ,使得 成立,求整数 的最小sin8g10,20,x12fxga值精选高中模拟试卷第 5 页,共 19 页23在对

8、人们的休闲方式的一次调查中,共调查了 124 人,其中女性 70 人,男性 54 人,女性中有 43 人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有 21 人主要的休闲方式是看电视,其余人主要的休闲方式是运动(1)根据以上数据建立一个 22 的列联表;(2)能否在犯错误的概率不超过 0.01 的前提下,认为休闲方式与性别有关系独立性检验观察值计算公式,独立性检验临界值表:P(K 2k0) 0.50 0.25 0.15 0.05 0.0250.01 0.005k0 0.4551.3232.0723.8415.0246.635 7.87924(本小题满分 12 分)如图,在四棱锥

9、中,底面 为菱形, 分别是棱 的中点,且ABCDSQPE、 ABSCD、平面 .SE(1)求证: 平面 ;/PQSAD(2)求证:平面 平面 .CE精选高中模拟试卷第 6 页,共 19 页精选高中模拟试卷第 7 页,共 19 页文山市高级中学 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:因为=cos(2x+ )= sin2x所以函数的周期为: =因为 f( x)=sin(2x)=sin2x=f(x),所以函数是奇函数故选 B【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力2 【答案】 D【解析】解:当 x

10、 为有理数时,f(x)=1;当 x 为无理数时,f (x)=0当 x 为有理数时,f(f(x)=f(1)=1;当 x 为无理数时,f(f(x)=f(0)=1即不管 x 是有理数还是无理数,均有 f(f (x)=1,故 正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意 xR,都有 f(x)=f(x),故 正确; 若 x 是有理数,则 x+T 也是有理数; 若 x 是无理数,则 x+T 也是无理数根据函数的表达式,任取一个不为零的有理数 T,f(x+T)=f(x)对 xR 恒成立,故 正确; 取 x1= ,x 2=0,x 3= ,可得 f(x 1)=0,f(x 2)=1,f(x 3

11、)=0A( ,0), B(0,1), C( ,0),恰好ABC 为等边三角形,故正确故选:D【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题3 【答案】B精选高中模拟试卷第 8 页,共 19 页【解析】解:x1x1 0由基本不等式可得, 当且仅当 即 x1=1 时,x=2 时取等号“=”故选 B4 【答案】B【解析】解: , ,(1, 2)=m(1,1)+n(1, 1)=(m+n,m n)m+n= 1,mn=2,m= ,n= ,故选 B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决

12、问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等5 【答案】B【解析】解:每个个体被抽到的概率等于 = ,则高一、高二、高三年级抽取的人数分别为 800 =20,600 =15,600 =15,故选 B【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题6 【答案】 B【解析】【专题】二项式定理【分析】由已知得到展开式的通项,得到第 6 项系数,根据二项展开式的系数性质得到 n,可求常数项精选高中模拟试卷第 9 页,共 19 页【解答】解:由已知( + ) 2n(n N*)展开式中只有第 6 项系数为 最大,所以展

13、开式有 11 项,所以 2n=10,即 n=5,又展开式的通项为 = ,令 5 =0 解得 k=6,所以展开式的常数项为 =210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出 n,利用通项求特征项7 【答案】B【解析】试题分析:由圆 ,可得 ,所以圆心坐标为 ,半径为260xy22(3)(1)4xy(3,1),要使得圆上有且仅有三个点到直线 是实数)的距离为,则圆心到直线的距离等于r 0aa,即 ,解得 ,故选 B. 112231a24a考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点

14、到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于 是解答的关键.12r8 【答案】A【解析】解:A= 1,0,1,2 ,B=0,2,4,AB=1,0,1,20, 2,4= 1,0,1,2,4 故选:A【点评】本题考查并集及其运算,是基础的会考题型9 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln 0,函数 f(x)=1 xlnx 的零点所在区间是(1,2)故选:C精选高中模拟试卷第 10 页,共 19 页【点评】本题主要考查函数零点区间的

15、判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反10【答案】D【解析】解:A=2B ,sinA=sin2B,又 sin2B=2sinBcosB,sinA=2sinBcosB,根据正弦定理 = =2R 得:sinA= ,sinB= ,代入 sinA=2sinBcosB 得:a=2bcosB故选 D11【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出 y= 的值,当 x0,时x=10,解得:x=10当 x0,时 x=10,解得:x=10故选:D12【答案】A【解析】分类讨论,有 2 种情形.孪生姐妹乘坐甲车,则有 种. 孪生姐妹不乘坐甲车,则有1223

16、C种. 共有 24 种. 选 A.1213C二、填空题13【答案】 k , +k),kZ 【解析】解:由 tan(x+ ) 得 +kx+ +k,解得 k x +k,故不等式的解集为k , +k),kZ,故答案为:k , +k),kZ,【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键精选高中模拟试卷第 11 页,共 19 页14【答案】 【解析】解:|PM| |PN|=6点 P 在以 M、N 为焦点的双曲线的右支上,即 ,(x0)对于,联立 ,消 y 得 7x218x153=0,=( 18) 247(153)0,y=x+1 是“单曲型直线” 对于,联立 ,消 y 得

17、 x2= ,y=2 是“单曲型直线 ”对于,联立 ,整理得 144=0,不成立 不是“ 单曲型直线”对于,联立 ,消 y 得 20x2+36x+153=0,=36 24201530y=2x+1 不是“单曲型直线” 故符合题意的有故答案为:【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用15【答案】 30xy【解析】试题分析:由圆 的方程为 ,表示圆心在 ,半径为的圆,点 到圆心的C230xy(0,1)C1,2P距离等于 ,小于圆的半径,所以点 在圆内,所以当 时, 最小,此时21,2PAB,由点斜式方程可得,直线的方程为 ,即 .1,CPk yx30y

18、考点:直线与圆的位置关系的应用.16【答案】精选高中模拟试卷第 12 页,共 19 页【解析】 点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。17【答案】 【解析】解:当 时,函数 y=4x

19、的图象如下图所示若不等式 4xlog ax 恒成立,则 y=logax 的图象恒在 y=4x的图象的上方(如图中虚线所示)y=logax 的图象与 y=4x的图象交于( ,2)点时,a=故虚线所示的 y=logax 的图象对应的底数 a 应满足 a1故答案为:( ,1)精选高中模拟试卷第 13 页,共 19 页18【答案】 解析:平面内两定点 M(0 ,2)和 N(0,2),动点 P(x,y)满足| | |=m(m 4), =m(0,0)代入,可得 m=4, 正确;令 y=0,可得 x2+4=m,对于任意 m,曲线 E 与 x 轴有三个交点,不正确;曲线 E 关于 x 轴对称,但不关于 y 轴

20、对称,故不正确;若 P、M 、N 三点不共线, | |+| |2 =2 ,所以PMN 周长的最小值为 2 +4,正确;曲线 E 上与 M、N 不共线的任意一点 G 关于原点对称的点为 H,则四边形 GMHN 的面积为 2SMNG=|GM|GN|sinMGNm,四边形 GMHN 的面积最大为不大于 m,正确故答案为:三、解答题19【答案】(1)当 时,函数单调递增区间为 ,无递减区间,当 时,函数单调递增区间0a0,0a为 ,单调递减区间为 ;(2)证明见解析.0,a1,【解析】试精选高中模拟试卷第 14 页,共 19 页题解析:(2)当 时, ,a2ln,0fxx由 可得 ,1210fxf21

21、10x即 ,22l令 ,则 ,12,lnttttt则 在区间 上单调递减,在区间 上单调递增,01,精选高中模拟试卷第 15 页,共 19 页所以 ,所以 ,1t2112xx又 ,故 ,120x25由 可知 1,10考点:函数导数与不等式【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理请考生在第 22、23 二题中任选一题作答,如果多做,则按所

22、做的第一题记分.解答时请写清题号.20【答案】 【解析】解:(1) 因为 x=2 是函数 f(x)的极值点,所以 a=2,则 f(x)= ,则 f(1)=1 ,f(1)= 1,所以切线方程为 x+y2=0;(2)当 a=1 时, ,其中 x ,e 2,当 x ,1)时,f(x) 0;x(1,e 2时,f (x)0,x=1 是 f(x)在 ,e 2上唯一的极小值点,f(x) min=f(1)=0 又 , ,综上,所求实数 m 的取值范围为 m|0me 2;(3) 等价于 ,若 a=1 时,由(2)知 f(x) = 在1,+)上为增函数,当 n1 时,令 x= ,则 x1,故 f(x)f(1)=0

23、,精选高中模拟试卷第 16 页,共 19 页即 , 故即 ,即 21【答案】【解析】: ,因为定义域为 , ()xafe(0,)有解 即 有解. 令 , ,()0xfx xhe()1)xe当 ,()0()hh所以,当 时, 无零点; 当 时,有唯一零点.a,f 0a由可知,当 时,设 在 上唯一零点为 ,fx,)0x当 , 在 为增函数;0(,)(xfx()0当 , 在 为减函数.0,f,00xxae0 00 00()lnln(ln)ln2lx xaafe ae22【答案】 21,642【解析】试题分析:(1)根据题意,对函数 求导,由导数的几何意义分析可得曲线 在点fx( ) yfx( )处

24、的切线方程,代入点 ,计算可得答案;f( , ( ) ) ( , )(2)由函数的导数与函数单调性的关系,分函数在( 上单调增与单调减两种情况讨论,综合即可得答3, )案;(3)由题意得, 分析可得必有 ,对 求导,2minaxfg( ) ( ) , 2158fxaxln fx( )对 分类讨论即可得答案a试题解析:精选高中模拟试卷第 17 页,共 19 页 ,21axf若函数 在区间 上单调递增,则 在 恒成立,,3210yax2,3,得 ; 40 61a4若函数 在区间 上单调递减,则 在 恒成立,fx2, ,,得 , 016a综上,实数 的取值范围为 ;1,4由题意得, ,minax2f

25、g,ax128g,即 ,min5f215ln8fx由 ,211 aaxxx当 时, ,则不合题意;0a0f当 时,由 ,得 或 (舍去),2a1x当 时, , 单调递减,12xafxf当 时, , 单调递增0,即 ,min58fxf17ln428a精选高中模拟试卷第 18 页,共 19 页整理得, , 17ln28a设 , , 单调递增,hx210hx hx, 为偶数,Z又 , ,172ln487ln48,故整数 的最小值为 。aa223【答案】 【解析】解:(1)看电视 运动 合计男性21 33 54女性43 27 70合计64 60 124(2)所以不能在犯错误的概率不超过 0.01 的前

26、提下认为休闲方式与性别有关系(12 分)【点评】独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过 k2的观测值与临界值的比较解决的24【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据线面平行的判定定理,可先证明 PQ 与平面内的直线平行,则线面平行,所以取 中SD点 ,连结 ,可证明 ,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先FPA,AFQ/证明线面垂直,根据所给的条件证明 平面 ,即平面 平面 .CSESACEQ试题解析:证明:(1)取 中点 ,连结 .SDP, 分别是棱 的中点, ,且 .、

27、C、 /D21在菱形 中, 是 的中点,ABAB精选高中模拟试卷第 19 页,共 19 页 ,且 ,即 且 .CDAQ/21AQFP/ 为平行四边形,则 .PF 平面 , 平面 , 平面 .SASD/SD考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直, 需熟练掌握判定定理以及性质定理.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报