1,一 氢原子的薛定谔方程,氢原子中电子的势能函数,定态薛定谔方程为,2,转化为球坐标,分离变量法求解,设,3,得,4,二 量子化条件和量子数,n =1,2,3,.为主量子数,求解上述方程时可得以下一些量子数及量子化特性,1 能量量子化和主量子数,5,2 角动量量子化和角量子数,电子绕核运动时的角动量为:,为角量子数,例如,n =2时, =0,1相应的,6,当氢原子置于外磁场中,角动量L在空间取向只能取一些特定的方向,L在外磁场方向的投影必须满足量子化条件,3 角动量空间量子化和磁量子数,磁量子数,7,磁量子数 ml =0, 1 , 相应的,例如, 时,,8,4 电子的自旋和自旋磁量子数,自旋角动量在外磁场方向上只有两个分量:,自旋角动量,ms称为自旋磁量子数,式中自旋量子数 ,即,9,10,5 小结,原子中的电子的运动状态可由四个量子数(n, l ,ml , ms) 来表示.,角量子数 l 决定电子的轨道角动量,磁量子数 ml 决定轨道角动量的方向,自旋量子数ms决定自旋角动量的方向,主量子数 n 决定电子的能量,