收藏 分享(赏)

中考几何中“线段和的最值”问题的教学策略.doc

上传人:HR专家 文档编号:8480912 上传时间:2019-06-29 格式:DOC 页数:8 大小:131.50KB
下载 相关 举报
中考几何中“线段和的最值”问题的教学策略.doc_第1页
第1页 / 共8页
中考几何中“线段和的最值”问题的教学策略.doc_第2页
第2页 / 共8页
中考几何中“线段和的最值”问题的教学策略.doc_第3页
第3页 / 共8页
中考几何中“线段和的最值”问题的教学策略.doc_第4页
第4页 / 共8页
中考几何中“线段和的最值”问题的教学策略.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、中考几何中“线段和的最值”问题的教学策略的研究一、问题产生的背景在初四总复习中,我们在教学中发现有一类求线段和差极值的题目,学生常常找不到解题的突破口,教学难度及学生掌握难度较大。如:(中考数学选)如图,已知直线 yx 1 与 y 轴交于点 A,与 x 轴交于点 D,抛物线 y x 2bxc 与直线交于 A、E 两点,2 1与 x 轴交于 B、 C 两点,且 B 点坐标为(1,0)(1)求该抛物线的解析式;(3)在抛物线的对称轴上找一点 M,使|AMMC|的值最大,求出点 M 的坐标问题的第三问常令许多同学甚至是优等生的同学都瞠目结舌。综观近几年的数学中考题,此类题频频出现在选择、填空、综合题

2、中。通过平日测试来看,此类题的失分很高,应该引起我们的重视。二、造成学生对问题困惑的原因我们一起研究分析后,发现几何极值问题在教课书虽然没有专题讲解,但却给出了它的模型。学生对几何极值模型的陌生,及教师在复习时对教材例习题的拓展延伸程度不够,是导致学生对这类问题困惑的根本原因。课本中的例题与习题,都是通过筛选的题目的精华,在解题的思路和方法上具有典型性和代表性,在由知识转化为能力的过程中具有示范性和启发性它们的解题方法和结论本身都具有广泛迁移的可能现实教学过程中,教师对教材例题、习题 开发的意识不强,在备课中不能对例题、习题进行深层次的挖掘、拓展、再创造,在授课时也往往出现一笔带过、草草了事的

3、教学现状,根本没有很好的利用例题、习题的所潜在的价值,而教材例题、习题的开发能促使学yxCBAD OEy生的学习方式由“重结论轻过程”向“ 过程与结果”并重的方向发展,使学生挖掘隐含问题的本质属性,从而达到“做一题,通一类,会一片”的解题境界正如数学教育家波利亚指出的:“一个有责任性的教师穷于应付繁琐的数学内容和过量的题目,还不如适当选择某些有意义但有不太复杂的题目去帮助学生发掘题目的各个方面,在指导学生的解题过程中,提高他们的才智和解题能力三、问题前后知识的联系:课本题目再现:鲁教版七年级教材第一册第一章第三节第轴对称的性质 15 页试一试:如图所示,要在公路帝修建一个蔬菜收购站,由蔬菜基地

4、 A,B 向收购站运送蔬菜,收购站应建在什么地方,才能使从 A,B 到它的距离之各最短?本题涉及的知识不是一个简单的轴对称变换,其变化过程实际是求一类几何极值的过程,此题模式是求几何几何的典型模式。本题的解答是:作出点 A 的轴对称点 A1,连接 A1B 交直线 l 于点 E,则点 E 为所求的奶站位置。 利用这一题例的结论,可以解决一些同根异形关联题。此题的结论广泛应用于三角形、四边形及函数中几何极值的求解。复习时遇到这类题目,可以引起我们很多的联想,比如:这个模型成立的条件和依据是什么?涉及到哪些知识点? 应用了怎样的数学思想和方法?求和的最大值这样求,那么差的极值是什么情况?求几何极值都

5、有那几类问题?初中涉及到求解几何极值都有那些依据?有那些常见的图形?有那些常见的方法?用函数知识能否解答?进而思考在初中数学中极值情况有哪些方法?几何有极值问题又会让我们想起几何定值问题,那么定值问题又如何去研究?有无规律?此问题有那些变式?都可以怎样变?一个一个的数学问题可以引领我们进入一个让我们极为兴奋的数学王国中去,把所学的知识连成线,连成串,让我们去感受数学的精彩缤纷的魅力。四、解决本问题的设想:引领学生建立模型,通过对模型的熟练应用,适当的对原模型进行拓展的延伸,建立更完整的知识体系,达到解决问题的目的。三、解决问题的策略(一)引领学生建立数学模型数学建模是一种数学的思考方法,是运用

6、数学的语言和方法,通过抽象、简化建立能近似刻画并“解决“ 实际问题的一种强有力的数学手段。用模型分析实际事物,锻炼我们的创新能力,建立的模型是分析事物的很好的方法,在教学中我们可以选择适当的建模专题,引导学生通过讨论、分析和研究,熟悉并理解数学模型。1、模型一A、理论依据:两点之间,线段最短B、用途:求两条线段和的最小值当 P 运动到 E 时,PAPB 最小课本原型:如图所示,要在街道旁修建一个奶站,向居民区 A、B 提供牛奶,奶站应建在什么地方,才能使从 A、 B 到它的距离之和最短?本题的解答是:作出点 A 的轴对称点 A1,连接 A1B 交直线 l 于点 E,则点 E 为所求的奶站位置。

7、 利用这一题例的结论,可以解决一些同根异形关联题。把模型一时行拓展延伸,不难会得到如下新模型:2、模型二A、理论依据:三角形两边之差小于第三边B、用途:求两条线段差的最大值当 Q运动到 F时,(QD QC ) 最大二、引领学生应用模型1、引领解题例:在对抛物线的称轴上存在一点 P,使得PBC 的周长最小,请求出点 P 的坐标 .第一步 寻找、构造几何模型要求PBC 的周长最小,只要 PB+PC 最小就好了!第二步:转化图形,进行计算把 PB+PC 转化为 PA+PC !当 P 运动到 H 时,PA+PC 最小2、反思解题方法:此类试题往往以角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物

8、线等为背景,但都有一个“轴对称性”的图形共同点,解题时只有从变化的背景中提取出“建奶站问题”的数学模型,再通过找定直线的对称点把同侧线段和转换为异侧线段和或差,实现“折”转“直”即可解决。有时问题是求三角形周长或四边形周长的最小值,一般此时会含有定长的线段,依然可以转化为“建奶站问题”。3、变换模型应用的场景:132AC【关联题 1】应用于三角形中(2011 湖北黄石市中考题) 如图 4,在等腰ABC 中, ABC=120,点 P 是底边 AC 上一个动点,M、N 分别是 AB、BC 的中点,若 PM+PN 的最小值为 2,则 ABC 的周长是( )析解:把等腰ABC 沿 AC 翻折可得一菱形

9、,由上面【关联题 1】的解答可知,PM+PN 的最小值就是菱形的边 AB 的长,故 AB=2,由 AB=BC=2,ABC=120易求得 ,因此ABC 的周长是 ( )。【关联题 2】应用于四边形中(2009 湖北荆门市中考题) 如图 2,菱形 ABCD 的两条对角线分别长 6 和 8,点P 是对角线 AC 上的一个动点,点 M、N 分别是边 AB、BC 的中点,则 PM+PN 的最小值是 _【关联题 3】应用于圆中(2010 乐山市中考题)如图 3,MN 是O 的直径,MN=2,点 A 在O 上,AMN=30,B 为弧 AN 的中点,P 是直径 MN 上一动点,则 PA+PB 的最小值为( )

10、析解: 连结 OA,由AMN=30得AON=60,取点 B 关于MN 的对 称点 B,中国教育文库:www.china-连结OB、 AB, AB交 MN 于点 P,则 AB的长为 PA+PB 的最小值,且 易知AOB=90,即AOB为等腰 Rt,故【关联题 4】应用于函数中(2010 济宁市中考题)如图,正比例函数 的图象与反比例函数在第一象限的图象交于 点,过 点作 轴的垂线,垂足为 ,已知的面积为 1.(1)求反比例函数的解析式;(2)如果 为反比例函数在第一象限图象上的点(点 与点 不重合),且 点的横坐标为 1,在 轴上求一点 ,使 最小.(威海市 2009 年中考题) 如图 5,在直

11、角坐标系中,点 A,B,C 的坐标分别为(-1 ,0),( 3,0),(0,3 ),过 A,B,C 三点的抛物线的对称轴为直线 l,D 为对称轴上 l 一动点,(1) 求抛物线的解析式; (2)求当 AD+CD 最小时点 D 的坐标;(3) 以点 A 为圆心,以 AD 为半径作A ,证明:当 AD+CD 最小时,直线 BD 与A 相切。写出直线 BD 与A 相切时,D 点的另一个坐标。析解:(1)可设 y=a(x+1)(x-3),再代入点 C 坐标,即可求得 y=-x2+2x+3。(2)利用点 A、B 关于直线 l:x=1 对称,连结 BC 交l 于 D,则此时 AD+CD 取得最小值;设 l

12、 与 x 轴交点为 E,由BED BOC 可求得 DE=2,BD=2 姨 2 =AD,所以D 的坐标为(1 ,2)。(3 ) 如图 6,连结 AD,由点 A、B、D 、E 的坐标易知ADE 和BDE 均为等腰 Rt,故ADE=BDE=45所以ADB=90 ,所以直线 BD 与A 相切。由对称性知点 D 的另一个坐标是(1 ,-2 )。【关联题 5】应用于实际问题(2011 济宁市)去冬今春,济宁市遭遇了 200 年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村 A 和李村 B 送水。经实地勘查后,工程人员设计图纸时,以河道上的大桥 O 为坐标原点,以河道所在的

13、直线为 x 轴建立直角坐标系(如图)。两村的坐标分别为 A(2,3),B(12,7)。(1)、若从节约经费考虑,水泵站建在距离大桥 O 多远的地方可使所用输水管道最短?在 x 轴、y 轴上是否分别存在点 M、N,使得四边形 MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.八、平行性练习题:1、(2010 年滨州市)如图,等边ABC 的边长为6,AD 是边 BC 上的中线,M 是 AD 上的动点,E 是边 AC上的一点,若 AE=2,EM+CM 的最小值为_。2、如图,菱形 ABCD 中,BAD=60 0,M 是 AB 的中点,P 是对角线 AC 上的一个动点,若PM+

14、PB 的最小值是 3,则 AB 长为_.3、如图,O 的半径为 2,点 A,B,C 在O 上,OAOB,AOC=60 0,P 是 OB 上一动点,PA+PC 的最小值为_。4在正方形 ABCD 中,点 E 是 BC 上的一定点,且 BE=10, EC=14,点 P 是 BD 上的一动点,则 PE+PC 的最小值是 6、【威海中考】如图,已知直线 y x1 与 y 轴交2于点 A,与 x 轴交于点 D,抛物线 y x 2bxc 与直线交于 A、E 两点,与 x 轴交于 B、C 两点,且 B 点坐标为(1,0)(1)求该抛物线的解析式;(3)在抛物线的对称轴上找一点 M,使|AMMC|的值最大,求出点 M 的坐标yxCBAD OEy

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报