1、1.2.1排列(3),1对有约束条件的排列问题,应注意如下类型: 某些元素不能在或必须排列在某一位置;某些元素要求连排(即必须相邻);某些元素要求分离(即不能相邻);,2基本的解题方法: ()有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法);特殊元素,特殊位置优先安排策略,方法总结,()某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;相邻问题捆绑处理的策略,()某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;不相邻问题插空处
2、理的策略,3.(1)直接计算法:即把符合限制条件的排列数直接计算出来,此种算法又可分为先考虑特殊元素还是先考虑特殊位置两种方法。 (2)间接计算法:即先不考虑限制条件,把所有排列种数算出。再从中减去全部不符合条件的排列种数,间接得出符合条件的排列种数。,例1:某小组7人排队照相,以下各有几种不同的排法?1)若排成两排,前排3人,后排4人;2)若排成两排,前排3人,后排4人,甲必排在前排,乙必排在后排;,3)甲不在左端,乙不在右端;,4)甲乙不相邻;,5)甲、乙、丙均不相邻;,6)甲乙必须间隔2人;,7)甲、乙、丙不能都站一起;,例1:某小组7人排队照相,以下各有几种不同的排法?8)若甲乙相邻,
3、但与丙不相邻;9)甲、乙、丙三人中,有两人相邻但这三人不同时相邻10)若甲乙丙三人顺序一定;,11)7人围成一圈;,12)7人围成一圈,其中甲乙丙三人不相邻;,变式:若直线Ax+By+C=0的系数A、B可以从0,1,2,3,6,7这六个数字中取不同的数值,则这些方程所表示的直线条数是( )A.18 B.20 C.12 D.22,A,练习:,1由0,1,3,5,7这五个数组成无重复数字的三位数,其中是5的倍数的共有多少个( )A9 B21 C 24 D42 2一天课程表中,6节课要安排3门理科,3门文科,要使文、理科间排,不同的排课方法有 种;要使3门理科的数学与物理连排,化学不得与数学、物理连
4、排,不同的排课方法有 种。 39位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有 种。,答案 B; 72、144 ; 166320,5、在7名运动员中选4名运动员组成接力队,参加4x100接力赛,那么甲、乙两人都不跑中间两棒的安排方法共有多少种?,6、从19这九个数字中取出5个不同的数进行排列,求取出的奇数必须排在奇数位置上的五位数的个数。,4、某城市新建的一条道路上有12只路灯,为了节约用电而又不影响正常的照明,可以熄灭其中3只灯,但两端的灯不能熄灭,也不能熄灭相邻的两只灯。则熄灯的方法有多少种?,小结: 1对有约束条件的排列问题,应注意如下类型: 某些元素不能在或必须排列在某一位置; 某些元素要求连排(即必须相邻); 某些元素要求分离(即不能相邻);,2基本的解题方法: ()有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法); 特殊元素,特殊位置优先安排策略,()某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;相邻问题捆绑处理的策略,()某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 不相邻问题插空处理的策略,